The locomotory behaviour of 12 ant species belonging to four different genera (Formicinae: Cataglyphis, Formica, Lasius; Myrmicinae: Myrmica) was studied by filming individuals during walking on smoked-glass plates. Subsequent multivariate analyses of walking kinematics and footfall positions showed marked species-specific as well as size-dependent differences in the locomotory behaviour. The geometric properties of the footfall patterns resulting from the alternating tripod gait scale to leg dimensions in a geometric manner. At high speed, footprint distances between succeeding tripods exceed maximum leg extension, indicating that ants are 'trotting' from one tripod to the next one with intermittent aerial phases. In at least one species (Cataglyphis bombycina), there is evidence for quadrupedal locomotion at the highest speed. The functional relationship between stride length (s, the distance between successive footprints of the same foot) and speed (v) was best described by a curvilinear model, s=avb. Exponent b ranges from 0.3 to 0.6 and reveals differences between species. Within species, exponent b is constant, whereas factor a scales to leg length. Females and males show metachronal interleg coordination patterns rather than the alternating tripod coordination pattern seen in workers of the same species.

This content is only available via PDF.