Fifty-four skeins of pink-footed geese (Anser brachyrhynchus) were photographed from directly underneath to eliminate the effects of perspective distortion, and the wing-tip spacings (the distance between adjacent birds' wing tips perpendicular to the flight path at maximum wingspan) and depths (the distance between adjacent birds' body centres parallel to the flight path) were measured at the same time as local wind speeds. The photographs were used to test for savings in induced power from wing positioning relative to the predicted positions of vortices generated by other wings, using a theoretical model. The mean wing-tip spacing corresponded to a saving in induced power of 14 %, less than one-third of the maximum possible. The saving in total power might be as low as 2.4 %. The high variation in wing-tip spacing suggests that pink-footed geese found difficulty maintaining position and thus adopted a strategy of flying outboard of the optimal position that maximises savings. This may minimise the risk of straying into a zone where savings are negative. There was a significant correlation between depth and wing-tip spacing, supporting an alternative communication hypothesis, whereby the birds position themselves to obtain maximum information on their neighbour's position. In high winds, there was little change in wing-tip spacing variation but a decrease in depth variation, suggesting a shift towards more regularly spaced skeins.
ENERGY SAVINGS IN FORMATION FLIGHT OF PINK-FOOTED GEESE
C Cutts, J Speakman; ENERGY SAVINGS IN FORMATION FLIGHT OF PINK-FOOTED GEESE. J Exp Biol 1 April 1994; 189 (1): 251–261. doi: https://doi.org/10.1242/jeb.189.1.251
Download citation file:
Advertisement
Cited by
In the field: an interview with Martha Muñoz

Martha Muñoz is an Assistant Professor at Yale University, investigating the evolutionary biology of anole lizards and lungless salamanders. In our new Conversation, she talks about her fieldwork in Indonesia, Costa Rica, the Dominican Republic and the Appalachian Mountains, including a death-defying dash to the top of a mountain through an approaching hurricane.
Call for new preLighters
(update)-CallForPreLighters.png?versionId=3981)
preLights is the preprint highlighting community supported by The Company of Biologists. At the heart of preLights are our preLighters: early-career researchers who select and write about interesting new preprints for the research community. We are currently looking for new preLighters to join our team. Find out more and apply here.
Graham Scott in conversation with Big Biology

Graham Scott talks to Big Biology about the oxygen cascade in mice living on mountaintops, extreme environments for such small organisms. In this JEB-sponsored episode, they discuss the concept of symmorphosis and the evolution of the oxygen cascade.
Trap-jaw ants coordinate tendon and exoskeleton for perfect mandible arc
-AntJaws.png?versionId=3981)
Trap-jaw ants run the risk of tearing themselves apart when they fire off their mandibles, but Greg Sutton & co have discovered that the ants simultaneously push and pull the mandibles using energy stored in a head tendon and their exoskeleton to drive the jaws in a perfect arc.
Hearing without a tympanic ear
-Review.png?versionId=3981)
In their Review, Grace Capshaw, Jakob Christensen-Dalsgaard and Catherine Carr explore the mechanisms of hearing in extant atympanate vertebrates and the implications for the early evolution of tympanate hearing.