1. 1.

    The metabolic costs of calling for male Requena verticalis Walker (Tettigoniidae: Listroscelidinae) were measured by direct recordings of oxygen consumption. The acoustic power output was measured by sound pressure levels around the calling bushcricket. 2. The average metabolic cost of calling was 0.143 ml g-1 h-1 but depended on calling rate. The net metabolic cost of calling per unit call, the syllable, was calculated to be 4.34×10-6+/−8.3×10-7 ml O2 syllable-1 g-1 body mass (s.e.) from the slope of the relationship between total V(dot)O2 and rate of syllable production. The resting V(dot)O2, calculated as the intercept of the relationship, was 0.248 ml O2 g-1 body mass h-1. 3. The energetic cost of calling for R. verticalis (average mass 0.37 g) was estimated at 31.85×10-6 J syllable-1. 4. Sound pressure levels were measured around calling insects. The surface area of a sphere of uniform sound pressure level [83 dB SPL root mean square (RMS) acoustic power] obtained by these measurements was used to calculate acoustic power. This was 0.20 mW. 5. The metabolic efficiency of calling, based on total metabolic energy utilisation, was 6.4 %. However, we propose that the mechanical efficiency for acoustic transmission is closer to 57 %, since only about 10 % of muscle metabolic energy is apparently available for sound production. 6. R. verticalis emits chirps formed of several syllables within which are discrete sound pulses. Wing stroke rates, when the insect is calling at its maximal rate, were approximately 583 min-1. This is slow compared to the rates observed in conehead tettigoniids, the only other group of bushcrickets where metabolic costs have been measured. The thoracic temperatures of males that had been calling for 5 min were not significantly different from those of non-calling males. 7. For R. verticalis, calling with relatively slow syllable rates may reduce the total cost of calling, and this may be a compensatory mechanism for their other high energetic cost of mating (a large spermatophylax).

This content is only available via PDF.