In vitro experiments were carried out to examine the interactions between oxygen and carbon dioxide transport in the blood of the sea lamprey. Oxygen dissociation curves for whole blood obtained from quiescent lampreys had Hill numbers (nH) ranging from 1.52 to 1.89. The Bohr coefficient for whole blood was -0.17 when extracellular pH (pHe) was considered, but was much greater (-0.63) when red blood cell pH (pHi) was considered. The pHi was largely dependent on haemoglobin oxygen- saturation (SO2) and the pH gradient across the red blood cell membrane was often reversed when PCO2 was increased and/or SO2 was lowered. The magnitude of the increase in pHi associated with the Haldane effect ranged from 0.169 pH units at 2.9 kPa PCO2 to 0.453 pH units at a PCO2 of 0.2 kPa. Deoxygenated red blood cells had a much greater total CO2 concentration (CCO2) than oxygenated red blood cells, but the nonbicarbonate buffer value for the red blood cells was unaffected by oxygenation. Plasma CCO2 was not significantly different under oxygenated or deoxygenated conditions. Partitioning of CO2 carriage in oxygenated and deoxygenated blood supports recent in vivo observations that red blood cell CO2 carriage can account for much of the CCO2 difference between arterial and venous blood. Together, the results also suggest that oxygen and carbon dioxide transport may not be tightly coupled in the blood of these primitive vertebrates. Finally, red cell sodium concentrations were dependent on oxygen and carbon dioxide tensions in the blood, suggesting that sodium-dependent ion transport processes may contribute to the unique strategy for gas transport in sea lamprey blood.
IN VITRO INTERACTIONS BETWEEN OXYGEN AND CARBON DIOXIDE TRANSPORT IN THE BLOOD OF THE SEA LAMPREY (PETROMYZON MARINUS)
- Split-screen
- Views Icon Views
-
Article Versions Icon
Versions
- Version of Record 01 December 1992
- Share Icon Share
-
Tools Icon
Tools
- Search Site
R. A. Ferguson, N. Sehdev, B. Bagatto, B. L. Tufts; IN VITRO INTERACTIONS BETWEEN OXYGEN AND CARBON DIOXIDE TRANSPORT IN THE BLOOD OF THE SEA LAMPREY (PETROMYZON MARINUS). J Exp Biol 1 December 1992; 173 (1): 25–41. doi: https://doi.org/10.1242/jeb.173.1.25
Download citation file:
Advertisement
Cited by
In the field: an interview with Martha Muñoz

Martha Muñoz is an Assistant Professor at Yale University, investigating the evolutionary biology of anole lizards and lungless salamanders. In our new Conversation, she talks about her fieldwork in Indonesia, Costa Rica, the Dominican Republic and the Appalachian Mountains, including a death-defying dash to the top of a mountain through an approaching hurricane.
Graham Scott in conversation with Big Biology

Graham Scott talks to Big Biology about the oxygen cascade in mice living on mountaintops, extreme environments for such small organisms. In this JEB-sponsored episode, they discuss the concept of symmorphosis and the evolution of the oxygen cascade.
Trap-jaw ants coordinate tendon and exoskeleton for perfect mandible arc
-AntJaws.png?versionId=3942)
Trap-jaw ants run the risk of tearing themselves apart when they fire off their mandibles, but Greg Sutton & co have discovered that the ants simultaneously push and pull the mandibles using energy stored in a head tendon and their exoskeleton to drive the jaws in a perfect arc.
Hearing without a tympanic ear
-Review.png?versionId=3942)
In their Review, Grace Capshaw, Jakob Christensen-Dalsgaard and Catherine Carr explore the mechanisms of hearing in extant atympanate vertebrates and the implications for the early evolution of tympanate hearing.