Chloride channels were previously purified from bovine kidney cortex membranes using a drug affinity column. Reconstitution of the purified proteins into artificial liposomes and planar bilayers yielded chloride channels. A 64 x 10(3) M(r) protein, p64, identified as a component of this chloride channel, was used to generate antibodies which depleted solubilized kidney membranes of all chloride channel activity. This antibody has now been used to identify a clone, H2B, from a kidney cDNA library. Antibodies, affinity-purified against the fusion protein of H2B, from a kidney cDNA library. Antibodies, affinity-purified against the fusion protein of H2B, also depleted solubilized kidney cortex from all chloride channel activity. The predicted amino acid sequence of p64 shows that it contains two and possibly four putative transmembrane domains and potential phosphorylation sites by protein kinases A and C. There was no significant homology to other protein (or DNA) sequences in the data base including other anion channels or the cystic fibrosis transmembrane conductance regulator. The protein is expressed in all cells tested and probably represents the chloride channel of intracellular organelles. Cystic fibrosis (CF) is associated with a defect in a cyclic-AMP-activated chloride channel in secretory epithelia which leads to decreased fluid secretion. In addition, many mucus glycoproteins show decreased sialylation but increased sulfation. We have recently shown that the pH of intracellular organelles is more alkaline in CF cells, an abnormality that is due to defective chloride conductance in the vesicle membranes. We postulate that the defect in the intracellular chloride channel, and hence the alkalization, could explain the glycosylation abnormalities since the pH optimum of Golgi sialyltransferase is acid while that of focusyl- and sulfotransferases is alkaline. Defects in sialyation of glycolipids might also generate receptors for Pseudomonas, which is known to colonize the respiratory tract of CF patients.
Chloride channels of intracellular organelles and their potential role in cystic fibrosis.
Q al-Awqati, J Barasch, D Landry; Chloride channels of intracellular organelles and their potential role in cystic fibrosis.. J Exp Biol 1 November 1992; 172 (1): 245–266. doi: https://doi.org/10.1242/jeb.172.1.245
Download citation file:
Advertisement
Cited by
In the field: an interview with Martha Muñoz

Martha Muñoz is an Assistant Professor at Yale University, investigating the evolutionary biology of anole lizards and lungless salamanders. In our new Conversation, she talks about her fieldwork in Indonesia, Costa Rica, the Dominican Republic and the Appalachian Mountains, including a death-defying dash to the top of a mountain through an approaching hurricane.
Graham Scott in conversation with Big Biology

Graham Scott talks to Big Biology about the oxygen cascade in mice living on mountaintops, extreme environments for such small organisms. In this JEB-sponsored episode, they discuss the concept of symmorphosis and the evolution of the oxygen cascade.
Trap-jaw ants coordinate tendon and exoskeleton for perfect mandible arc
-AntJaws.png?versionId=3942)
Trap-jaw ants run the risk of tearing themselves apart when they fire off their mandibles, but Greg Sutton & co have discovered that the ants simultaneously push and pull the mandibles using energy stored in a head tendon and their exoskeleton to drive the jaws in a perfect arc.
Hearing without a tympanic ear
-Review.png?versionId=3942)
In their Review, Grace Capshaw, Jakob Christensen-Dalsgaard and Catherine Carr explore the mechanisms of hearing in extant atympanate vertebrates and the implications for the early evolution of tympanate hearing.