The membrane-associated V-ATPase that plays an important role in the regulation of acid-base balance by the kidney is a multisubunit enzyme that is densely packed into specialized membrane domains in intercalated cells. Intercalated cells can be separated into at least two subtypes, A-cells and B-cells, based on their morphological features, the distribution of V-ATPase, and the presence or absence of a basolateral chloride/bicarbonate anion exchanger (AE1) exclusively in B-cells. A-cells secrete protons into the tubule lumen, whereas B-cells secrete bicarbonate. The relative amounts of V-ATPase and AE1 in the plasma membranes of A- and B-cells are modulated under different acid-base conditions and provide a sensitive means by which urinary acidification can be controlled. The mechanisms governing the movement of acid-base transporting proteins between intracellular vesicles and the plasma membrane are under investigation. The microtubular apparatus of the cell is involved in maintaining both apical and basolateral polarity of the enzyme, and different isoforms of V-ATPase subunits may also be involved in the selective targeting of V-ATPase to different membrane domains.

This content is only available via PDF.