Locusts do not regulate thoracic temperature during flight and as a result the thoracic temperature of a flying locust generally exceeds ambient temperature by 5–8 °C. Elevated thoracic temperatures were shown to affect wing-beat frequency in intact and deafferented Locusta migratoria. Tethered locusts were flown in a wind tunnel. Temperature was elevated by increasing the ambient temperature of the apparatus and by exposing flying animals to heat pulses. Electromyographic (EMG) recordings were made in deafferented locusts perfused with salines at different temperatures. Wing-beat frequency was shown to vary with thoracic temperature in both the intact and the deafferented situation. The slope of the rise in wing-beat frequency with experimental increases in thoracic temperature was similar in intact and deafferented animals. These experiments demonstrate an effect of temperature on the central flight circuitry. Further intracellular investigationsare needed to determine the neural basis of these effects.
Temperature Dependency of Wing-Beat Frequency in Intact and Deafferented Locusts
JANE A. FOSTER, R. MELDRUM ROBERTSON; Temperature Dependency of Wing-Beat Frequency in Intact and Deafferented Locusts. J Exp Biol 1 January 1992; 162 (1): 295–312. doi: https://doi.org/10.1242/jeb.162.1.295
Download citation file:
Advertisement
Cited by
In the field: an interview with Harald Wolf
(update)-Conversation.jpg?versionId=3747)
In our new Conversation, Harald Wolf talks about his fieldwork experiences working with desert ants in Tunisia to understand their navigation.
Propose a new Workshop
-GSWorkshop.png?versionId=3747)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Julian Dow steps down and John Terblanche joins the JEB team
-NewEditor.png?versionId=3747)
After 15 years with the journal, Julian Dow from University of Glasgow, UK, is stepping down as a Monitoring Editor. We wish Julian all the best for the future and welcome John Terblanche, Stellenbosch University, South Africa, who is joining the team. Julian talks about his long association with The Company of Biologists and the journal and John tells us about his life and career in this News article.
The capture of crude oil droplets by filter feeders at high and low Reynolds numbers
-FilterFeeders.jpg?versionId=3747)
Researchers from the University of Montreal, Canada, reveal how tiny filter feeding barnacles and Daphnia entrap and consume minute droplets of crude oil, introducing the pollutant at the bottom of the food chain.
Patterns and processes in amphibious fish
-Review.png?versionId=3747)
In their Review, Keegan Lutek, Cassandra Donatelli and Emily Standen discuss the biomechanics and neural control of terrestrial locomotion in amphibious fish. They explore how locomotor mode depends on body shape, physical constraints and phylogeny.