Diverse animals can orient using geomagnetic cues, but little is known about the neurophysiological mechanisms that underlie magnetic field detection. The marine mollusc Tritonia diomedea (Bergh) has a magnetic sense and its nervous system is amenable to cellular-level electrophysiological analysis. In a semi-intact whole-animal preparation, intracellular recordings from the large, visually identifiable neurons left pedal 5 (LPe5) and right pedal 5 (RPe5) in the brain of Tritonia revealed enhanced electrical activity in response to changes in ambient earth-strength magnetic fields. No such changes in activity were observed in approximately 50 other neurons subjected to identical magnetic stimuli. The responses of LPe5 were characterized by increases in spiking frequency occurring about 6–16 min after the ambient magnetic field had been rotated to a new position. The response was abolished when the brain had been isolated from the periphery of the animal by severing nerves, a procedure that also transected prominent neurites of LPe5. We hypothesize that LPe5 is one component of a neural circuit mediating detection of the earth's magnetic field or orientation to it.
An identifiable molluscan neuron responds to changes in earth-strength magnetic fields
K. J. Lohmann, A. O. Willows, R. B. Pinter; An identifiable molluscan neuron responds to changes in earth-strength magnetic fields. J Exp Biol 1 November 1991; 161 (1): 1–24. doi: https://doi.org/10.1242/jeb.161.1.1
Download citation file:
Advertisement
Cited by
In the field: an interview with Martha Muñoz

Martha Muñoz is an Assistant Professor at Yale University, investigating the evolutionary biology of anole lizards and lungless salamanders. In our new Conversation, she talks about her fieldwork in Indonesia, Costa Rica, the Dominican Republic and the Appalachian Mountains, including a death-defying dash to the top of a mountain through an approaching hurricane.
Graham Scott in conversation with Big Biology

Graham Scott talks to Big Biology about the oxygen cascade in mice living on mountaintops, extreme environments for such small organisms. In this JEB-sponsored episode, they discuss the concept of symmorphosis and the evolution of the oxygen cascade.
Trap-jaw ants coordinate tendon and exoskeleton for perfect mandible arc
-AntJaws.png?versionId=3942)
Trap-jaw ants run the risk of tearing themselves apart when they fire off their mandibles, but Greg Sutton & co have discovered that the ants simultaneously push and pull the mandibles using energy stored in a head tendon and their exoskeleton to drive the jaws in a perfect arc.
Hearing without a tympanic ear
-Review.png?versionId=3942)
In their Review, Grace Capshaw, Jakob Christensen-Dalsgaard and Catherine Carr explore the mechanisms of hearing in extant atympanate vertebrates and the implications for the early evolution of tympanate hearing.