The relationship between basal metabolism P and body mass M of 391 mammalian species has been analysed by least-squares regression, robust regression and covariance analyses. This relationship is a power function:

where the mass exponent b is 0.678±0.007 (mean±S.D.) and the mass coefficient a takes different values. Theory of measurement revealed that the 2/3 mass exponent is due to an underlying dimensional relationship between the primary quantity of mass and the secondary quantity of power.

This paper shows that the 2/3 mass exponent is not the physiological problem of interest. It is not the slope of the metabolic regression line, but its location in the mass/power plane, that must be explained. This location is given by the value of the mass coefficient, the explanation of which is, and remains, the central question in comparative physiology.

The relationship between body size and energy metabolism in animals has been studied for more than 150 years. In recent years there has been a renewed interest in this problem (Calder, 1984; Economos, 1983; Heusner, 1982a,b, 1984, 1985, 1987; Jürgens, 1989; McMahon and Bonner, 1983; Peters, 1983; Schmidt-Nielsen, 1984; Wieser, 1984).

Theoretical speculations (Sarrus and Rameaux, 1838-1839; von Hoesslin, 1888), followed by experimental and statistical studies (Rubner, 1883; Brody and Proctor, 1932; Brody, 1945; Kleiber, 1931-1932,1947,1961), have established that body mass M and basal metabolism P are related by a power function:
where a is the mass coefficient and b is the mass exponent.

Speculations about mechanisms of heat loss in mammals (Sarrus and Rameaux, 1838-1839; Rubner, 1883) or biological similitude (Economos, 1983; Gunther, 1975; Lambert and Teissier, 1927) predicted a mass exponent of 2/3, while statistical analyses actually revealed significantly larger mass exponents of 0.73–0.75 (Brody, 1945; Kleiber, 1961). In, 1963, the Third Symposium on Energy Metabolism (Kleiber, 1965) adopted the 0.75 mass exponent for standardizing basal metabolism. A few theoretical interpretations of the 0.75 mass exponent have been proposed (McMahon, 1973; Blum, 1977). However, none has proved to be a satisfactory explanation (Calder, 1987; Heusner, 1987; Speakman, 1990).

In 1982, the validity of 0.75 mass exponent was challenged. Heusner (1982a,b) questioned the meaning of the interspecific regression line between the logarithms of body mass and basal metabolism by showing that the average values of basal metabolism in seven mammalian species do not lie on a single regression line. Bartels (1982) reported a 0.66 mass exponent for mammals whose body mass ranged from 2.5 to 380×106g. A re-analysis of Bartels’ data by Jürgens (1989) revealed a mass exponent b of 0.678±0.017 (N=81). These studies also indicated that within different mass ranges b took significantly different values. For example, in small mammals b was significantly lower than in large mammals (M<20000g: b=0.602±0.031, N=67; M>20000 g: 6=0.772±0.033, A=14; t=5.15, P<0.00l). Bartels and Heusner’s results suggested that the metabolic data for mammals may not lie on a single linear regression line.

Hayssen and Lacy (1985) concluded that a linear regression line did not accurately describe the relationship between the logarithms of body mass and basal metabolism in 293 mammalian species. Their overall exponent 6=0.693 ±0.010 was significantly different from 0.75 (t=5.7, d.f.=291, P<0.00l). A re-analysis of their data by Jürgens (1989) has corroborated his earlier findings in Bartels’ data, i.e. in small mammals the mass exponent (b=0.648±0.012, N=275) tended to be lower than in large mammals (b=0.862±0.167, N=18).

Metabolic data published by Elgar and Harvey (1987) revealed the same trends: the overall mass exponent was significantly different from 0.75 (b=0.710±0.011, t=3.64, d.f.=263, P<0.00l), and in small mammals the mass exponent was lower than in large mammals (b=0.648 ±0.014, N=234 versus b=0.837 ± 0.088, N=31).

A study by McNab (1988) confirmed that in 320 mammalian species the overall mass exponent is significantly different from 0.75 (b=0.714±0.009; r=4.25, d.f. =318, P<0.001). But these data did not show a significant difference between the mass exponent in small and large mammals (b=0.683 ±0.009, N=297 for small mammals; b=0.601±0.172, N=23 for large mammals).

What general conclusions can be drawn from these four studies? In each sample, small mammals represented 83–94% of the data points and in these animals b was not significantly different from 2/3. Except in McNab’s study, b tended to be greater in large mammals. The inclusion of a relatively small number of large mammals was sufficient to make the overall value of b significantly greater than 2/3. These observations can be statistically explained if we assume that large and small mammals lie on different, but parallel, regression lines with slopes of 2/3, the line for large mammals being above that for small ones. Adding a few large mammals to the small ones would then cause the sample estimate of b to be greater than 2/3. Also, depending on the width and location of the mass range within which data points are sampled, different values of b would be observed.

The aim of this paper is to show that, indeed, small and large mammals he on parallel regression lines with slopes of 2/3. The physical implications of this statistical model will be discussed.

Metabolic data for 391 mammalian species from 17 orders (Artiodactyla, Carnivora, Chiroptera, Edentata, Hyracoidea, Insectivora, Lagomorpha, Mac-roscelidea, Marsupiala, Monotremata, Perissodactyla, Pholidota, Primates, Pro-boscidea, Rodentia, Scandentia and Sirenia) have been compiled from their original sources. I verified that body mass and energy metabolism were measured on the same animals and that the data were valid estimates of basal metabolism. The data have been standardized with respect to the units. Basal metabolism is expressed in Watts (W) and body mass in g (see Appendix). On the graphs, body mass is expressed in kg, to reduce the number of digits on the mass scale.

The coordinates of each data point were the averages of measurements from the same laboratory and made on individuals of the same mammalian species. When data for the same species, but from different sources, were available, the data for which the experimental conditions most closely approximated those of basal metabolism were selected. Each mammalian species was used only once in the statistical analysis, irrespective of the actual number of individuals from which the data point was derived.

Fig. 1 shows the bilogarithmic scatter diagram of the 391 data points. Each data point represents one species.

Fig. 1.

Bilogarithmic scatter diagram of basal metabolism and body mass of 391 mammalian species. The vertical lines divide the data sample into four groups of equal size.

Fig. 1.

Bilogarithmic scatter diagram of basal metabolism and body mass of 391 mammalian species. The vertical lines divide the data sample into four groups of equal size.

The dashed lines intersecting the x-axis represent the lower hinge, the median and the upper hinge of the box plot of the logarithm of body mass (Chambers et al. 1983). These lines divide the data sample into four equally sized groups or quartiles: 25% of the mammals in this sample are smaller than 41.4 g, 50% are smaUer than 157.8 g, 75% are smaller than 1581 g. Within the mass range from 2.5 to 3672000g there is an overwhelming predominance of small mammals: only 29 mammals or 7.4% are larger than 20000 g.

Least-squares regression between the logarithms of body mass and basal metabolism yielded the following statistics for the 391 mammals:

  1. the sample mean vector
  2. the covariance matrix S
  3. the mass exponent b

The regression was very significant: Snedecor’s ratio of variances was F=7808, d.f. = 1, 389, P<0.001; the coefficient of determination was r2=0.952. The mass exponent b was significantly different from 0.75 (r=5.05, d.f. =389, P<0.001) and from 2/3 (t=5.37, d.f. =389, P<0.001).

In 362 small mammals (M<20000g) the mass exponent (b=0.663±0.009) was significantly lower than in 29 large mammals (M>20000 g: b=0.794± 0.094; t=2.05, P<0.05). Clearly, a single rectilinear regression line does not accurately describe these data.

Subdividing the range of body mass according to arbitrary mass limits is too subjective for analyzing the relationship between body mass and basal metabolism. An objective approach is to determine how many data points within the total mass range can be accurately described by one regression line. Statistically, this amounts to the identification and regrouping of data points (outliers) whosa probability of falling about the same regression line is very low (P⩽0.006). The determination of outliers was performed by robust regression analysis (Rousseeuw and Leroy, 1987).

This technique, based on the least median of squares line (LMS line), partitioned the data sample into two groups. Group 1 consisted of 363 mammals (92.8%) within a mass range from 2.5 to 407 000g. Their data points were randomly distributed about the LMS line with a slope of b=0.665 (unfortunately there was no method for estimating the error on the slope). The coefficient of determination was 0.959 and the scale estimate (or standard error of estimate) was 0.144. Group 2 consisted of 28 outliers (7.2% of the sample), 25 positive outliers (positive standardized residuals) and 3 negative outliers (negative standardized residuals). Since the leverage (Kleinbaum et al. 1988) of these negative outliers was small, they have been added to group 1. The positive outliers belonged to the following mammalian orders: Artiodactyla, 10 species (66%); Carnivora, 7 species (22%); Insectivora, 2 species (8%); Proboscidea, 1 species (100%) and Rodentia, 5 species (3%). The negative outliers belonged to the following orders: Chiroptera, 1 species (3%) and Insectivora, 2 species (8%).

Fig. 2 shows the data and regression lines for both groups. Least-squares regression analysis of group 1 yielded the following results: mass exponent b=0.677± 0.008, coefficient of determination r2=0.952, standard error of estimate sy|x=0.146, F=7203, d.f. = l, 364. Least-squares regression analysis of group 2 yielded the following results: b=0.679± 0.009, r2=0.996, sy|x=0.077, F=5948, d.f. = 1, 23, P<0.00l. In both groups, the regression was very significant; the mass exponents were not different and did not differ from 2/3.

Fig. 2.

Regression lines between the logarithms of basal metabolism and body mass in 391 mammalian species. The open symbols and dotted line show observations from the 25 positive ‘outliers’. See text for further details.

Fig. 2.

Regression lines between the logarithms of basal metabolism and body mass in 391 mammalian species. The open symbols and dotted line show observations from the 25 positive ‘outliers’. See text for further details.

Covariance analysis of these two groups showed that the intragroup slope b was 0.678±0.007 and the intragroup correlation coefficient r1 was 0.980. The difference in elevation of the two regression lines was very significant: log(a2) = −1.623±0.020, N=366 and log(a2) = *#x2212;1.207±0.037, N=25, F=182, d.f. = l, 388, P<0.00l.

In summary, the relationship between basal metabolism and body mass of 391 mammalian species can be accurately described by two regression lines with a common slope of 2/3 and different intercepts.

The foregoing statistical analysis has shown that a power function (equation 1) with a mass exponent of 2/3 is a valid statistical model for describing the interspecific relationship between body mass and basal metabolism in mammals. This analysis has also shown that, contrary to common belief, the mass coefficient is not constant. Is this power function also a valid physical model – i.e. can a physical or physiological meaning be given to its parameters?

The power function or the so-called allometric equation has commonly been interpreted as revealing some kind of similitude among mammals (Gunther, 1975). In particular, the 2/3 mass exponent has been considered to be a criterion of biological similitude (Lambert and Teissier, 1927) and the 3/4 mass exponent a criterion of elastic similarity (McMahon, 1973). But comparative morphology clearly shows that small and large mammals are not geometrically similar. Furthermore, mammals and birds may fall on the same regression line with a slope of 2/3. These observations call for a different explanation of the 2/3 mass exponent.

The interspecific metabolic mass exponent of 2/3, instead of revealing biological similitude among mammals, may very well reflect an underlying dimensional relationship between the physical quantities of mass and power. The following example from geometry illustrates this idea.

Geometry deals with three quantities: length L, surface area.S’, and volume V. These three quantities are dimensionally related:
therefore,
The dimensional relationship (equation 4) is numerically implemented in any given solid by relating the measures of surface area 5 and volume v by means of the volume coefficient c.
When 5 and v are expressed in units derived from the same unit of length (cm→cm2, cm→cm3), then c is determined by the form of the solid (c=6 in cubes and 4.84 in spheres). However, except for spheres, c is not form-specific, i.e. different forms may have the same value of c. Note that, depending on the values of c, the dimensional relationship (equation 4) can be numerically implemented in many different ways.

Equation 5 also expresses the relationship between volume and surface area in geometrically similar solids of different size, where changes in s and v are due only to changes in size. Equation 5 is not valid in solids that are not geometrically similar, where changes in s are also due to changes in form (c). The relationship between v and S is still a power function, but the underlying dimensional 2/3 exponent is masked by the relationship between size and form. Now, the values of the volume exponent and volume coefficient are determined by the distribution of form within the volume range. In general, the volume exponent is different from 2/3, with one exception – when form is randomly distributed within the volume range. In this case, the 2/3 volume exponent does not reveal geometric similitude of the solids but the underlying dimensional relationship between the quantities of surface area and volume. The corollary of this is that the 2/3 volume exponent is a necessary, but not sufficient, condition for geometric similitude.

This example shows that we must distinguish the dimensional relationship between quantities (equation 4) from the numerical relationship between the measures of these quantities (equation 5). We shall now apply these same principles to find the underlying dimensional relationship between the primary quantity of mass and the secondary quantity of power in the metabolic power function.

Primary quantities, such as mass M, length L and time T, are directly measurable. They have well-defined standards of measurement from which their units are derived. A secondary quantity, such as velocity (L T−1), is a combination of the arbitrarily chosen primary quantities and has no standard.

With mass M, length L and time T as primary quantities, the dimensional equation of any secondary quantity Q is given by:
where the exponents α1,β1 and γ1 are the dimensions of mass, length and time, respectively (Bridgeman, 1931; Ellis, 1968). Since α1=l, β1=2 and γ1= 3 for energy metabolism, its dimensional equation is:
To establish the dimensional relationship between body mass M and basal metabolism P, we define a standard mammal that embodies the standards of volume, mass and time. In real, complex forms such as mammals, length and surface areas are fractals, i.e. their measure depends on the chosen units (Mandelbrot, 1982). To avoid this complication we choose volume V, which is directly measurable, as one of the primary quantities. The period of a periodic process (cardiac or respiratory cycle) in this standard mammal is taken as the standard of time. With mass M, volume V and time T as primary quantities, the secondary quantities are then given by:
where α2, β2 and γ2 are the dimensions of mass, volume and time, respectively.
The dimensional equations of the secondary quantities of length, surface area and power (basal metabolism) are:
Since the standards of mass, volume and time are embodied in the same system, they, and the units that are derived from them, are linked by relationships of similitude. They cannot be independently changed. In two standard mammals which differ only in size, the following similitude relationships beween their respective standards of mass (m1;m2) volume (v1;v2) and time (t1;t2) hold:
where μ, v and τ are similitude constants.
A change in a secondary quantity is then given by:
The similitude constants μ, v and τ of the measures of M, V and T are themselves related by the following relationships. If the two standard mammals differ in size only, their density is the same. This is expressed by:
Assuming that the measure of the time standard is proportional to length, then:
Under these conditions, the relationship between the measures q1 and q2 of any secondary quantity is given by:
Equation 18 defines a new system of units in which the dimensions of all the secondary quantities can be expressed in terms of only one primary quantity, mass. Dimensions have no intrinsic significance (Staicu, 1982). They are the result of arbitrarily chosen primary Quantities, and. therefore, deoend on the number and nature of these primary quantities. Different quantities may have the same dimensional equation in the same system of units. For example, frequency and angular velocity have the same dimension T−1 in the M, L, T system. Flow, force and power are dimensionally equivalent ([M2/3]) in the system based on mass alone.
The relationship between the measures of power (p1;p2) in two standard mammals is then:
which can be rewritten as:
where a, the mass coefficient, is:
Equation 20 is also the statistical model derived from regression analysis. The 2/3 mass exponent is the dimension of the secondary quantity of power in terms of the primary quantity of mass. The 2/3 mass exponent reveals the dimensional relationship between the units of mass and power, and not biological similitude in mammals. Indeed, with the large number of mammals, the values of the mass coefficient a tend to be randomized within the mass range. This randomization reveals the underlying, dimensional 2/3 mass exponent.
Through the mass coefficient a, the dimensional relationship between mass and power is numerically implemented. With mass as the only primary quantity, a is dimensionless:
i.e. a is mass-independent and a pure number.

Physiologically, a or the ratio P/M2/3 is the energy spent per unit mass and per unit of the defined time scale: a is the mass-specific physiological power (Heusner, 1982b). The ratio P/M2/3 is a mass-independent measure of basal metabolism (MIM, Heusner, 1985). Changes in this ratio measure the effect of metabolic factors other than mass. Animals with the same MIM lie on the same regression line. At the same body mass, these animals would have the same basal metabolism. Conversely, animals in which the MIM is different cannot have the same basal metabolism at the same body mass.

The system of units based solely on mass shows that the so-called allometric relationships are necessary consequences of the underlying dimensional relationships between mass and the various quantities that are measured in an organism and do not reveal special properties such as geometric, biological or elastic similarity in these organisms.

Theory of measurement reveals a necessary underlying dimensional relationship between mass and power, and statistical analysis confirms the existence of this relationship in mammals. Statistics and the theory of measurement are both concerned with describing relationships accurately, not with providing physical explanations. An accurate description is a first and necessary step towards a physical explanation of a relationship. This paper shows that the mass exponent is not the physiological problem of interest. It is not the slope of the metabolic regression line, but its location in the mass/power plane that must be explained. This location is given by the value of the mass coefficient, the explanation of which is, and remains, the central question in comparative physiology.

I gratefully acknowledge the criticisms and suggestions offered by Dr M. L. Heusner.

Arends
,
A.
(
1985
).
Comparative energetics of caviomorph rodents
.
PhD dissertation
,
University of Florida
.
Arnold
,
J.
and
Shield
,
J.
(
1970
).
Oxygen consumption and body temperature of the Chuditch Dasyurus geoffroii
.
J. Zool., Lond
.
160
,
391
404
.
Bartels
,
H.
(
1982
).
Metabolic rate of mammals equals the 0.75 power of their body weight
.
Exp. Biol. Med
.
7
,
1
11
.
Bartholomew
,
G. A.
,
Dawson
,
W. R.
and
Lasiewski
,
R. C.
(
1970
).
Thermoregulation and heterothermy in some smaller flying foxes (Megachiroptera) of New Guinea
.
Z. vergl. Physiol
.
70
,
196
209
.
Bartholomew
,
G. A.
and
Hudson
,
J. W.
(
1962
).
Hibernation, estivation, temperature regulation, evaporative water loss and heart rate of the pigmy possum, Cercartetus nanus
.
Physiol. Zool
.
35
,
94
107
.
Bartholomew
,
G. A.
,
Leitner
,
P.
and
Nelson
,
J. E.
(
1964
).
Body temperature, oxygen consumption and heart rate in three species of Australian flying foxes
.
Physiol. Zool
.
37
,
179
198
.
Bartholomew
,
G. A.
and
McMillen
,
R. E.
(
1961
).
Oxygen consumption, estivation, and hibernation in the kangaroo mouse, Microdipodops pallidus
.
Physiol. Zool
.
34
,
177
183
.
Baudinette
,
R. V.
(
1972
).
Energy metabolism and evaporative water loss in the California ground squirrel. Effects of burrow temperature and water vapor pressure
.
J. comp. Physiol
.
81
,
57
72
.
Benedict
,
F. G.
(
1938
).
Vital Energetics
.
A Study in Comparative Basal Metabolism
.
Washington
:
Carnegie Institution
.
Bienkowski
,
P.
and
Marszalek
,
U.
(
1974
).
Metabolism and energy budget in the snow vole
.
Acta theriol
.
19
,
55
67
.
Blaxter
,
K. L.
(
1966
).
The efficiency of feed conversion by livestock
.
J. R. agrie. Soc
.
125
,
87
99
.
Blum
,
J. J.
(
1977
).
On the geometry of four dimensions and the relationship between metabolism and body mass
.
J. theor. Biol
.
64
,
599
601
.
Bolls
,
N. J.
and
Perfect
,
J. R.
(
1972
).
Summer resting metabolic rate of the gray squirrel
.
Physiol. Zool
.
45
,
54
59
.
Bowers
,
J. R.
(
1971
).
Resting metabolic rate in the cotton rat Sigmodon
.
Physiol. Zool
.
44
,
37
147
.
Dradley
,
S. R.
(
1976
).
Temperature regulation and bioenergetics of some microtine rodents
.
PhD dissertation
.
Ithaca
:
Cornell University
.
Bradley
,
W. G.
,
Miller
,
J. S.
and
Yousef
,
M. K.
(
1974
).
Thermoregulatory patterns pocket gophers
.
Physiol. Zool
.
47
,
172
179
.
Bradley
,
W. G.
and
Yousef
,
M. K.
(
1975
).
Thermoregulatory responses of the plains pocket gopher, Geomys bursarius
.
Comp. Biochem. Physiol
.
52A
,
35
38
.
Bradley
,
W. G.
,
Yousef
,
M. K.
and
Scott
,
I. M.
(
1975
).
Physiological studies on the rock pocket mouse Perognathus intermedias
.
Comp. Biochem. Physiol
.
50A
,
331
337
.
Bridgeman
,
P. W.
(
1931
).
Dimensional Analysis
.
New Haven, London
:
Yale University Press. 113pp
.
Brockway
,
J. M.
and
Maloiy
,
G. M. O.
(
1968
).
Energy metabolism of the red deer
.
J. Physiol., Lond
.
194
,
22P
24P
.
Brody
,
S.
(
1945
).
Bioenergetics and Growth
.
New York
:
Reinhold. 1023pp
.
Brody
,
S.
and
Proctor
,
R. C.
(
1932
).
Growth and development. XXIII. Relation between basal metabolism and mature body weight in different species of mammals and birds
.
Mon. agrie, exp. Stn Res. Bull
.
166
,
89
102
.
Browœr
,
J. E.
and
Cade
,
T. J.
(
1966
).
Ecology and physiology otNapaeozapus insignis (Miller) and other woodLond mice
.
Ecology
47
,
46
63
.
Brown
,
J. H.
(
1968
).
Adaptation to environmental temperature in two species of woodrats, Neotoma cinerea and N
.
albigula. Mise. Publ. Mus. Zool. Univ. Mich
.
135
,
1
48
.
Brown
,
J. H.
and
Lasiewski
,
R. C.
(
1972
).
Metabolism of weasels. The cost of being long and thin
.
Ecology
53
,
939
943
.
Calder
,
W. A.
, III
(
1984
).
Size, Function and Life History
.
Cambridge, MA
:
Harvard University Press
.
Calder
,
W. A.
, III
(
1987
).
Scaling energetics of homeothermic vertebrates: an operational allometry
.
A. Rev. Physiol
.
49
,
107
120
.
Capstick
,
J. W.
and
Wood
,
T. B.
(
1922
).
The effect of change of temperature on the basal metabolism of swine
.
J. agrie. Sci
.
12
,
257
268
.
Carpenter
,
R. E.
(
1966
).
A comparison of thermoregulation and water metabolism in the kangaroo rats Dipodomys agilis and Dipodomys merrimami
.
Univ. Calif. Publ. Zool
.
78
,
1
36
.
Carpenter
,
R. E.
and
Graham
,
J. B.
(
1967
).
Physiological responses to temperature in the long-nosed bat, Leptonycteris sanborni
.
Comp. Biochem. Physiol
.
22
,
709
722
.
Casey
,
T. M.
and
Casey
,
K. K.
(
1979
).
Thermoregulation of arctic weasels
.
Physiol. Zool
.
52
,
153
164
.
Casey
,
T. M.
,
Withers
,
P. C.
and
Casey
,
K. K.
(
1979
).
Metabolic and respiratory responses of arctic mammals to ambient temperature during the summer
.
Comp. Biochem. Physiol
.
64A
,
331
342
.
Chambers
,
J. M.
,
CleveLond
,
W. S.
,
Kleiner
,
B.
and
Tukey
,
P. A.
(
1983
).
Graphical Methods for Data Analysis
.
Pacific Grove, CA
:
Wadsworth and Brooks/Cole Publishing Company Advanced Books and Software. 395pp
.
Chappel
,
R. W.
and
Hudson
,
R. J.
(
1978
).
Winter bioenergetics of Rocky Mountain bighorn sheep
.
Can. J. Zool
.
56
,
2388
2393
.
Chevillard-Hugot
,
M.
,
Muller
,
E. F.
and
Kulzer
,
E.
(
1980
).
Oxygen consumption, body temperature and heart rate in the coati (Nasua nasua)
.
Comp. Biochem. Physiol
.
65A
,
305
310
.
Chew
,
R. M.
,
Lindberg
,
R. G.
and
Hayden
,
P.
(
1967
).
Temperature regulation in the little pocket mouse, Perognathus longimembris
.
Comp. Biochem. Physiol
.
21
,
487
505
.
Coady
,
J. W.
(
1975
).
Bioenergetics of the brown lemming (Lemmus sibericus)
.
PhD dissertation
,
University of Alaska at Fairbanks
.
Contreras
,
L. C.
(
1983
).
Physiological ecology of fossorial mammals. A comparative study
.
PhD dissertation
,
University of Florida, Gainesville
.
Dalby
,
P. L.
and
Heath
,
A. G.
(
1976
).
Oxygen consumption and body temperature of the Argentine field mouse, Akodon azarae, in relation to ambient temperature
.
J. therm. Biol
.
1
,
177
179
.
Daniels
,
H. L.
(
1984
).
Oxygen consumption in Lemur fulvus. Deviation from the ideal mode
.
J. Mammal
.
65
,
584
592
.
Dawson
,
T. J.
(
1955
).
The relation of oxygen consumption to temperature in desert rodents
.
J. Mammal
.
36
,
543
553
.
Dawson
,
T. J.
(
1973
).
Thermoregulatory responses of the arid zone kangaroos, Megaleia rufa
.
Comp. Biochem. Physiol
.
46A
,
153
169
.
Dawson
,
T. J.
and
Bennet
,
A. F.
(
1978
).
Energy metabolism and thermoregulation of the spectacled hare wallaby (Lagorchestes conspicillatus)
.
Physiol. Zool
.
51
,
114
130
.
Dawson
,
T. J.
and
Dawson
,
W. R.
(
1982
).
Metabolic scope and conductance in response to cold of some dasyurid marsupials and Australian rodents
.
Comp. Biochem. Physiol
.
71A
,
59
64
.
Dawson
,
T. J.
and
Degabriele
,
R.
(
1973
).
The cuscus (Phalanger maculatus) - a marsupial sloth?
J. comp. Physiol
.
83
,
41
50
.
Dawson
,
T. J.
and
Fanning
,
F. D.
(
1981
).
Thermal and energetic problems of semiaquatic mammals. A study of the Australian water rat, including comparisons with the platypus
.
Physiol. Zool
.
54
,
284
296
.
Dawson
,
T. J.
,
Grant
,
T. R.
and
Fanning
,
D.
(
1979
).
Standard metabolism of monotremes and the evolution of homeothermy
.
Aust. J. Zool
.
27
,
511
515
.
Dawson
,
T. J.
and
Hulbert
,
A. J.
(
1970
).
Standard metabolism, body temperature and surface areas of Australian marsupials
.
Am. J. Physiol
.
218
,
1233
1238
.
Dawson
,
T. J.
and
Wolfers
,
J. M.
(
1978
).
Metabolism, thermoregulation and torpor in shrew sized marsupials of the genus Planigale
.
Comp. Biochem. Physiol
.
59A
,
305
309
.
Degabriele
,
R.
and
Dawson
,
T. J.
(
1979
).
Metabolism and heat balance in an arboreal marsupial, the koala (Phascolarctos cinereus)
.
J. comp. Physiol
.
134
,
293
301
.
Dodgen
,
L. L.
and
Blood
,
F. R.
(
1956
).
Energy sources in the bat
.
Am. J. Physiol
.
187
,
151
154
.
Drozdz
,
A.
,
Górecki
,
A.
,
Grodzinzki
,
W.
and
Pelikan
,
J.
(
1971
).
Biogenetics of water voles (Arvicola terrestris L.) from southern Moravia
.
Ann. Zool. Fennici
8
,
97
103
.
Dryden
,
G. L.
,
Gebczynski
,
M.
and
Douglas
,
E. L.
(
1974
).
Oxygen consumption by nursling and adult musk shrews
.
Acta theriol
.
19
,
453
461
.
Ebisu
,
R. J.
and
Whittow
,
G. C.
(
1976
).
Temperature regulation in the small Indian mongoose (Herpestes auropunctatus)
.
Comp. Biochem. Physiol
.
54A
,
309
313
.
Economos
,
A. C.
(
1983
).
Elastic and/or geometric similarity in mammalian design
.
J. theor. Biol
.
103
,
167
172
.
Elgar
,
M. A.
and
Harvey
,
P. H.
(
1987
).
Basal metabolic rates in mammals: allometry, phylogeny and ecology
.
Funct. Ecol
.
1
,
25
36
.
Ellis
,
B.
(
1968
).
Basic Concepts of Measurement
.
Cambridge
:
Cambridge University Press
.
220
pp.
El-Nouty
,
F. D.
,
Yousef
,
M. K.
,
Magdub
,
A. B.
and
Johnson
,
H. D.
(
1978
).
Thyroid hormones and metabolic rate in burros, Equus asinus, and llamas, Lama glama, and effects of environmental temperature
.
Comp. Biochem. Physiol
.
60A
,
235
237
.
Erikson
,
H.
(
1956
).
Observations on the metabolism of arctic ground squirrels (Citellusparryi) at different environmental temperatures
.
Acta physiol, scand
.
36
,
66
74
.
Farrel
,
D. J.
and
Wood
,
A. J.
(
1968
).
The nutrition of the female mink (Mustela vison). I. The metabolic rate of the mink
.
Can. J. Zool
.
46
,
41
45
.
Fedick
,
A.
(
1971
).
Social thermoregulation in Apodemus flavicollis (Melchior 1854)
.
Acta theriol
.
16
,
221
229
.
Gallivan
,
G. J.
and
Best
,
R. C.
(
1980
).
Metabolism and respiration of the Amazonian manatee (Trichechus inunguis)
.
Physiol. Zool
.
53
,
245
253
.
Gallivan
,
G. J.
and
Ronald
,
K.
(
1981
).
Apparent specific dynamic action in the harp seal (Phoca groenLondica)
.
Comp. Biochem. Physiol
.
69A
,
579
581
.
Gebczynski
,
M.
(
1971
).
The rate of metabolism of the lesser shrew
.
Acta theriol
.
16
,
329
339
.
Gebczynski
,
M.
,
Górecki
,
A.
and
Drozdz
,
A.
(
1972
).
Metabolism, food assimilation and bioenergetics of three species of dormice (Gliridae)
.
Acta theriol
.
17
,
271
294
.
Gelineo
,
S.
(
1956
).
Contribution à la connaissance de la calorification du Lapin (Cuniculus cuniculus)
.
Bull. Acad, serbe Sci
.
16
,
1
16
.
Glenn
,
M. E.
(
1970
).
Water relations in three species of deer mice (Peromyscus)
.
Comp. Biochem. Physiol
.
33
,
231
248
.
Goffart
,
M.
(
1977
).
Hypometabolisme chez Ao tus trivirgatus
.
C. R. Séanc. Soc. Biol
.
171
,
1149
1152
.
Golightly
,
R. T.
, Jr
and
Ohmart
,
R. D.
(
1978a
).
Metabolism and body temperature of two desert canids: coyotes and kit foxes
.
J. Mammal
.
64
,
624
635
.
Golightly
,
R. T.
, Jr
and
Ohmart
,
R. D.
(
1978b
).
Heterothermy in free-ranging Abert’s squirrels (Sciurus aberti)
.
Ecology
.
59
,
897
909
.
Górecki
,
A.
(
1971
).
Metabolism and energy budget in the harvest mouse
.
Acta theriol
.
15
,
213
220
.
Górecki
,
A.
and
Christov
,
L.
(
1969
).
Metabolic rate of the lesser mole rat
.
Acta theriol
.
14
,
441
448
.
Górecki
,
A.
and
Wolek
,
J.
(
1975
).
Thermoregulation in common hamsters
.
Acta theriol
.
20
,
297
300
.
Goyal
,
S. P.
,
Ghosh
,
P. K.
and
Prakash
,
I.
(
1981
).
Significance of body fat in relation to basal metabolic rate in some Indian desert rodents
.
J. Arid Environ
.
4
,
59
62
.
Grant
,
T. R.
and
Dawson
,
T. J.
(
1978
).
Temperature regulation in the platypus, Ornithorhynchus anatinus. Production and loss of metabolic heat in air and water
.
Physiol. Zool
.
51
,
315
332
.
Gunther
,
B.
(
1975
).
On theories of biological similarity
.
In Fortschritte der Experimentellen und Theoretischen Biophysik
(ed.
W.
Beier
),
19
,
1
111
.
Leipzig
:
Thieme
.
Haberman
,
C. G.
and
Fleharty
,
E. D.
(
1971
).
Energy flow in Spermophilus franklinii
.
J. Mammal
.
52
,
710
716
.
Haim
,
A.
(
1981
).
Heat production and dissipation in a south African diurnal murid Lemniscomys griselda
.
S. Afr. J. Zool
.
16
,
67
70
.
Haim
,
A.
and
Le Fourie
,
R.
(
1980
).
Heat production in nocturnal (Praomys natalensis) and diurnal (Rhabdomys pumilio) South Arican murids
.
S. Afr. J. Zool
.
15
,
91
94
.
Hansson
,
L.
and
Grodzinski
,
W.
(
1970
).
Bioenergetic parameters of the field vole Microtus agresti
.
Oikos
21
,
76
82
.
Harlow
,
H. J.
(
1981
).
Torpor and other physiological adaptations of the badger (Taxidea taxis) to cold environments
.
Physiol. Zool
.
54
,
267
275
.
Harris
,
J. A.
and
Benedict
,
F. G.
(
1919
).
A Biometric Study of Basal Metabolism in Man. Carnegie Institution
.
266
pp.
Hart
,
J. S.
(
1950
).
Interrelations of daily metabolic cycle, activity, and environmental temperature of mice
.
Can. J. Res. D
28
,
293
307
.
Hart
,
J. S.
(
1953
).
Energy metabolism of the white-footed mouse, Peromyscus leucopus noveboracensis, after acclimatation at various environmental temperatures
.
Can. J. Zool
.
31
,
99
105
.
Hart
,
J. S.
(
1971
).
Rodents
.
In Comparative Physiology of Thermoregulation
(ed.
G. G.
Whittow
), pp.
1
149
.
New York
:
Academic Press
.
Hart
,
J. S.
and
Irving
,
L.
(
1959
).
The energetics of harbor seals in air and in water with special consideration of seasonal changes
.
Can. J. Zool
.
37
,
447
457
.
Hayssen
,
V.
and
Lacy
,
R. C.
(
1985
).
Basal metabolic rates in mammals: taxonomic differences in the allometry of BMR and body mass
.
Comp. Biochem. Physiol
.
81A
,
741
754
.
Hayward
,
J. S.
(
1965
).
Metabolic rate and its temperature-adaptive significance in six geographic races of Peromyscus
.
Can. J. Zool
.
43
,
309
323
.
Hennemann
,
W. W.
, III
and
Konecny
,
M. J.
(
1980
).
Oxygen consumption in large spotted genets, Genetta tigrina
.
J. Mammal
.
61
,
747
750
.
Hennemann
,
W. W.
, III
,
Thompson
,
S. D.
and
Konecny
,
M. J.
(
1983
).
Metabolism of crabeating foxes, Cerdocyon thous. Ecological influences on the energetics of canids
.
Physiol. Zool
.
56
,
319
324
.
Herreid
,
C. E.
and
Schmidt-Nielsen
,
K.
(
1966
).
Oxygen consumption, temperature, and water loss in bats from different environments
.
Am. J. Physiol
.
211
,
1108
1112
.
Heusner
,
A. A.
(
1982a
).
Energy metabolism and body size. I. Is the 0.75 mass exponent of Kleiber’s Equation a statistical artifact?
Respir. Physiol
.
48
,
1
12
.
Heusner
,
A. A.
(
1982b
).
Energy metabolism and body size. II. Dimensional analysis and energetic non-similarity
.
Respir. Physiol
.
48
,
13
25
.
Heusner
,
A. A.
(
1984
).
Biological similitude: statistical and functional relationships in comparative physiology
.
Am. J. Physiol
.
15
,
R839
R845
.
Heusner
,
A. A.
(
1985
).
Body size and energy metabolism
.
A. Rev. Nutr
.
5
,
267
293
.
Heusner
,
A. A.
(
1987
).
What does the power function reveal about structure and function in animals of different size?
A. Rev. Physiol
.
49
,
121
133
.
Hildwein
,
G.
(
1970
).
Capacites thermoregulatrices d’un mammifère insectivore primitif, le tenrec; leurs variations saisonnières
.
Arch. Set. Physiol
.
24
,
55
71
.
Hildwein
,
G.
(
1972
).
Métabolism énergétique de quelque mammifères et oiseaux de la forêt équatoriale. IL Résultats expérimentaux et discussion
.
Arch. Sci. physiol
.
26
,
387
400
.
Hildwein
,
G.
and
Goffart
,
M.
(
1975
).
Standard metabolism and thermoregulation in a prosimian Perodicticus potto
.
Comp. Biochem. Physiol
.
50A
,
201
213
.
Hill
,
R. W.
(
1975
).
Metabolism, thermal conductance, and body temperature in one of the largest species of Peromyscus, P. pirrensis
.
J. therm. Biol
.
1
,
109
112
.
Hill
,
R. W.
and
Hooper
,
E. T.
(
1971
).
Temperature regulation in mice of the genus Scotinomys
.
J. Mammal
.
52
,
806
816
.
Hinds
,
D. S.
(
1973
).
Acclimation of thermoregulation in the desert cottontail, Sylvilagus audubonii
.
J. Mammal
.
54
,
708
728
.
Hinds
,
D. S.
(
1977
).
Acclimation of thermoregulation in desert-inhaiting jackrabbits (Lepus alleni and Lepus californicus)
.
Ecology
58
,
246
264
.
Hooper
,
E. T.
and
Eiilali
,
M. E.
(
1972
).
Temperature regulation and habits in two species of jerboa, genus Jaculus
.
J. Mammal
.
53
,
574
593
.
Hudson
,
J. W.
(
1962
).
The role of water in the biology of the antelope ground squirrel, Citellus leucorus
.
Univ. Cal. Publ. Zool
.
64
,
1
56
.
Hudson
,
J. W.
(
1965
).
Temperature regulation and torpidity in the pigmy mouse, Baiomys taylori
.
Physiol. Zool
.
38
,
243
254
.
Hudson
,
J. W.
,
Deavers
,
D. R.
and
Bradley
,
S. R.
(
1972
).
A comparative study of temperature regulation in ground squirrels with special reference to the desert species
.
Symp. zool. Soc. Lond
.
31
,
191
213
.
Hudson
,
J. W.
and
Rummel
,
J. A.
(
1966
).
Water metabolism and temperature regulation of the primitive heteromyids, Liomys salvani and Liomys irroratus
.
Ecology
.
47
,
345
354
.
Hulbert
,
A. J.
and
Dawson
,
T. J.
(
1974
).
Standard metabolism and body temperature of perameloid marsupials from different environments
.
Comp. Biochem. Physiol
.
47A
,
583
590
.
Irving
,
L.
,
Krog
,
H.
and
Monson
,
M.
(
1955
).
The metabolism of some Alaskan mammals in winter and summer
.
Physiol. Zool
.
28
,
173
185
.
Iversen
,
J. A.
(
1972
).
Basal metabolism of mustelids
.
J. comp. Physiol
.
81
,
341
344
.
Iversen
,
J. A.
and
Krog
,
J.
(
1973
).
Heat production and body surface area in seals and sea otters
.
Norw. J. Zool
.
21
,
51
54
.
Jansky
,
L.
(
1959
).
Working oxygen consumption in two species of wild rodents (Microtus arvalis, Cethrionomys glareolus)
.
Physiol. Boh
.
8
,
472
478
.
Jones
,
D. L.
and
Wang
,
L. C. H.
(
1976
).
Metabolic and cardiovascular adaptations in the western chipmunk, genus Eutamias
.
J. comp. Physiol
.
105
,
219
231
.
JüRgens
,
K. D.
(
1989
).
Allometrie ais Konzept des Interspeziesvergleiches von Physiologischen Grossen
.
Berlin, Hamburg
:
Paul Parey
.
136
pp.
Kamau
,
J. M. Z.
,
Johansen
,
K.
and
Maloiy
,
G. M. O.
(
1979
).
Metabolism of the slender mongoose (Herpestes sanguineus)
.
Physiol. Zool
.
52
,
594
602
.
Kayser
,
C.
(
1939
).
Contribution à l’étude de la régulation thermique. L’émission d’eau et le rapport H2O:O2 chez quelques espèces homéothermes adultes et en cours de croissance
.
Anns Physiol, physicochim. Biol
.
6
,
721
744
.
Kayser
,
C.
and
Heusner
,
A.
(
1964
).
Étude comparative du métabolisme énergétique dans la série animale
.
J. Physiol
.,
Paris
56
,
489
524
.
Kenagy
,
G. J.
and
Vleck
,
D.
(
1982
).
Daily temporal organization of metabolism in small mammals. Adaptation and diversity
.
In Vertebrate Circadian Systems
(ed.
J.
Aschoff
,
S.
Daan
and
G.
Groos
), pp.
322
338
.
Heidelberg
:
Springer
.
Kibler
,
H. H.
,
Brody
,
S.
and
Worstell
,
D.
(
1947
).
Surface area and metabolism of growing guinea pigs
.
J. Nutr
.
33
,
331
338
.
Kinnear
,
A.
and
Shield
,
J. W.
(
1975
).
Metabolism and temperature regulation in marsupials
.
Comp. Biochem. Physiol
.
52A
,
235
245
.
Kirmiz
,
J. P.
(
1962
).
Adaptation to Desert Environment, a Study on the Jerboa, Rat and Man
.
London
:
Butterworth
.
Kleiber
,
M.
(
1931–1932
).
Body size and metabolism
.
Hilgardia
6
,
315
353
.
Kleiber
,
M.
(
1947
).
Body size and metabolic rate
.
Physiol. Rev
.
27
,
511
541
.
Kleiber
,
M.
(
1961
).
The Fire of Life
.
New York
:
Wiley
.
454
pp.
Kleiber
,
M.
(
1965
).
Metabolic body size. In Energy Metabolism
.
Proceedings of the Third Symposium, Troon, ScotLond, May 1964
(ed.
K. L.
Blaxter
), pp.
427
435
.
London
:
Academic Press
.
Kleinbaum
,
D. G.
,
Kupper
,
L. L.
and
Muller
,
K. E.
(
1988
).
Applied Regression Analysis and Other Multivariable Methods (second edition)
.
Boston
:
PWS-KENT Publishing Company
.
718
pp.
Kohl
,
H.
(
1980
).
Temperaturregulation, Stoffwechsel und Nierenfunktion beim Chinchilla (Chinchilla laniger Molina, 1782) und beim Viscacha (Lagostomus maximus)
.
Zool. Jb. (Physiol.)
84
,
472
501
.
Krogh
,
H.
and
Monson
,
M.
(
1954
).
Notes on the metabolism of a mountain goat
.
Am. J. Physiol
.
178
,
515
516
.
Kuyper
,
M. A.
(
1979
).
A biological study of the golden mole Amblysomus hottentotus
.
Master’s thesis
,
University of Natal
,
South Africa
.
Lambert
,
R.
and
Teissier
,
G.
(
1927
).
Théorie de la similitude biologique
.
Anns. Physiol
.
3
,
212
246
.
Layne
,
J. N.
and
Dolan
,
P. G.
(
1975
).
Thermoregulation, metabolism, and water economy in the golden mouse (Ochrotomys nuttali)
.
Comp. Biochem. Physiol
.
52A
,
153
163
.
Lee
,
A. K.
(
1963
).
The adaptations to arid environments in wood rats of the genus Neotoma
.
Univ. Calif. Publ. Zool
.
64
,
57
96
.
Leitner
,
P.
(
1966
).
Body temperature, oxygen consumption, heart rate and shivering in the California mastiff bat Eumops perotis
.
Comp. Biochem. Physiol
.
19
,
431
443
.
Leitner
,
P.
and
Nelson
,
J.
(
1967
).
Body temperature, oxygen consumption, and heart rate in the Australian false vampire bat, Macroderma gigas
.
Comp. Biochem. Physiol
.
21
,
65
74
.
Leon
,
B.
,
Shkolnik
,
A.
and
Shkolnik
,
T.
(
1983
).
Temperature regulation and water metabolism in the elephant shrew Elephantalus edwardi
.
Comp. Biochem. Physiol
.
74A
,
399
407
.
Lindstedt
,
S. L.
(
1980
).
Energetics and water economy of the smallest desert mammal
.
Physiol. Zool
.
53
,
82
97
.
MacArthur
,
R. A.
and
Wang
,
L. C. H.
(
1973
).
Physiology of thermoregulation in the pika, Ochotona princeps
.
Can. J. Zool
.
51
,
11
16
.
MacMillen
,
R. E.
,
Baudinette
,
R. V.
and
Lee
,
A. K.
(
1972
).
Water economy and energy metabolism of the sandy inLond mouse, Leggadina hermannsbergensis
.
J. Mammal
.
53
,
529
539
.
MacMillen
,
R. E.
and
Lee
,
A. K.
(
1970
).
Metabolism and pulmocutaneous water loss of Australian hopping mice
.
Comp. Biochem. Physiol
.
35
,
355
369
.
MacMillen
,
R. E.
and
Nelson
,
J. E.
(
1969
).
Bioenergetics and body size in dasyurid marsupials
.
Am. J. Physiol
.
217
,
1246
1251
.
Mandelbrot
,
B. B.
(
1982
).
A Fractal Geometry of Nature
.
San Francisco
:
W. H. Freeman and Company
.
461
pp.
Mazen
,
W. S.
and
Rudd
,
R. L.
(
1980
).
Comparative energetics in two sympatric species of Peromyscus
.
J. Mammal
.
61
,
573
574
.
McCormick
,
S. A.
(
1981
).
Oxygen consumption and torpor in the fat tailed dwarf lemus (Cheirogaleus médius). Rethinking prosimian metabolism
.
Comp. Biochem. Physiol
.
68A
,
605
610
.
McEwan
,
E. H.
(
1970
).
Energy metabolism of barren-ground caribou (Rangifer tarandus)
.
Can. J. Zool
.
48
,
391
392
.
McMahon
,
T.
(
1973
).
Size and shape in biology
.
Science
179
,
1201
1204
.
McMahon
,
T. A.
and
Bonner
,
J. T.
(
1983
).
On Size and Life
.
New York
:
Scientific American Library
.
255
pp.
McNab
,
B. K.
(
1966
).
The metabolism of fossorial rodents. A study in convergences
.
Ecology
47
,
712
733
.
McNab
,
B. K.
(
1969
).
The economics of temperature regulation in neotropical bats
.
Comp. Biochem. Physiol
.
31
,
227
268
.
McNab
,
B. K.
(
1973
).
The rate of metabolism of the spiny rat, Proechimys semispinosus, with comments on the ecological factors that influence the basal rate of metabolism in rodents and lagomorphs
.
Bol. Zool. Biol. Mar. N.S
.
30
,
93
103
.
McNab
,
B. K.
(
1978A
).
The energetics of arboreal folivores. Physiological problems and ecological consequences of feeding on an ubiquitous food resource
.
In The Ecology of Arboreal Folivores
(ed.
G. G.
Montgomery
), pp.
153
162
.
Washington
:
Smithsonian Institute
.
McNab
,
B. K.
(
1978b
).
The comparative energetics of neotropical marsupials
.
J. comp. Physiol
.
125
,
115
128
.
McNab
,
B. K.
(
1979
).
The influence of body size on the energetics and distribution of fossorial and burrowing mammals
.
Ecology
60
,
1010
1021
.
McNab
,
B. K.
(
1980
).
Energetics and the limits to a temperate distribution in armadillos
.
J. Mammal
.
61
,
606
627
.
McNab
,
B. K.
(
1982
).
The physiological ecology of South American mammals
.
In Mammalian Biology in South America
(ed.
M. A.
Mares
and
H. H.
Genoways
), pp.
187
207
. Special Publication no. 6.
Pymatuning Laboratory of Ecology, University of Pittsburgh, Pittsburgh
.
McNab
,
B. K.
(
1984
).
Physiological convergence amongst ant-eating and termite-eating mammals
.
J. Zool., Lond
.
203
,
485
510
.
McNab
,
B. K.
(
1988
).
Compheations inherent in scaling the basal rate of metabolism in mammals
.
Q. Rev. Biol
.
63
,
25
54
.
McNab
,
B. K.
and
Morrison
,
P.
(
1963
).
Body temperature and metabolism in subspecies of Peromyscus from arid and mesic environments
.
Ecol. Monogr
.
33
,
63
82
.
Milton
,
K.
,
Casey
,
T. M.
and
Casey
,
K. K.
(
1979
).
The basal metabolism of mantled howler monkeys (Alouatta palliata)
.
J. Mammal
.
60
,
373
376
.
Morrison
,
P. R.
and
McNab
,
B. K.
(
1962
).
Daily torpor in a Brasilian mouse opossum (Marmosa)
.
Comp. Biochem. Physiol
.
6
,
57
68
.
Morrison
,
P. R.
and
McNab
,
B. K.
(
1967
).
Temperature regulation in some Brazilian phyllostomid bats
.
Comp. Biochem. Physiol
.
21
,
207
221
.
Morrison
,
P. R.
and
Middleton
,
E. H.
(
1967
).
Body temperature and metabolism in the pygmy marmoset
.
Folia Primatol
.
6
,
70
82
.
Morrison
,
P. R.
and
Ryser
,
F. A.
(
1951
).
Temperature and metabolism in some Wisconsin mammals
.
Fedn Proc. Fedn Am. Socs exp. Biol
.
10
,
93
94
.
Morrison
,
P. R.
and
Ryser
,
F. A.
(
1962
).
Metabolism and body temperature in a small hibemator, the meadow jumping mouse, Zapus hudsonicus
.
J. cell. comp. Physiol
.
60
,
169
180
.
Morrison
,
P. R.
and,
Simoes
,
J.
, Jr
(
1962
).
Body temperatures in two Brasilian primates
.
Bol. Fac. Filos, Cien. Let., Univ. Sao Paulo (Zool.), Brasil
24
,
167
178
.
Morton
,
S. R.
and
Lee
,
A. K.
(
1978
).
Thermoregulation and metabolism in Planigale mandata (Marsupialia Dasyridae)
.
J. therm Biol
.
3
,
117
120
.
Muller
,
E. F.
(
1979
).
Energy metabolism, thermoregulation, and water budget in the slow loris (Nycticebus coucang Boddaert 1785)
.
Comp. Biochem. Physiol
.
64A
,
109
119
.
Muller
,
E. F.
and
Kulzer
,
E.
(
1977
).
Body temperature and oxygen uptake in the kinkajou (Potos flavus, Schreber), a nocturnal tropical carnivore
.
Archs int. Physiol. Biochem
.
86
,
153
163
.
Musser
,
G. C.
and
Shoemaker
,
V. H.
(
1965
).
Oxygen consumption and body temperature in relation to ambient temperature in the Mexican deer mice, Peromyscus thomasi and P. megalops
.
Occ. Papers Mus. Zool. Univ. Mich
.
643
,
1
15
.
Nagel
,
A.
(
1977
).
Torpor in the european white-toothed shrews
.
Experientia
33
,
1455
1456
.
Nagel
,
A.
(
1980
).
Sauerstoffverbrauch, Temperatureregulation und Herzfrequenz der Europaischen Spitzmause (Soricidae, Mammalia
).
Dissertation
,
Eberhard Karls Universitat
.
Tübingen
.
Nelson
,
Z. C.
and
Yousef
,
M. K.
(
1979
).
Thermoregulatory responses of desert wood rats, Neotoma lepida
.
Comp. Biochem. Physiol
.
63A
,
109
113
.
Nevo
,
E.
and
Shkolnik
,
A.
(
1974
).
Adaptive metabolic variation of chromosome forms in mole rats, Spalax
.
Experientia
30
,
724
726
.
Newman
,
R. L.
(
1967
).
Metabolism in the eastern chipmunk (Tamias striatus) and the southern flying squirrel (Glaucomys volans) during winter and summer
.
In Mammalian Hibernation HI
(ed.
K. C.
Fisher
,
R. A.
Dawe
and
C. P.
Lyman
).
Nicol
,
S. C.
(
1976
).
Oxygen consumption and nitrogen metabolism in the potoroo, Potorous tridactylus
.
Comp. Biochem. Physiol
.
55A
,
215
218
.
Nicol
,
S. C.
and
Maskrey
,
M.
(
1980
).
Thermoregulation, respiration and sleep in the Tasmanian devil, Sarcophilus harrisii (Marsupialia Dasyuridae)
.
J. comp. Physiol
.
140
,
241
248
.
Noll-Banholzer
,
U. G.
(
1979
).
Body temperature, oxygen consumption, evaporative water loss and heart rate in the fennec
.
Comp. Biochem. Physiol
.
62A
,
585
592
.
Packard
,
G. C.
(
1968
).
Oxygen consumption of Microtus montanus in relation to ambient temperature
.
J. Mammal
.
49
,
215
220
.
Palacio
,
C.
(
1977
).
Standard metabolism and thermoregulation in three species of lorosoid primates
.
Master’s thesis
,
University of Florida
,
Gainesville
.
Pauls
,
R. W.
(
1981
).
Energetics of the red squirrel. A laboratory study of the effects of temperature, seasonal acclimatization, use of the nest and exercise
.
J. therm. Biol
.
6
,
79
86
.
Pearson
,
A. M.
(
1962
).
Activity patterns, energy metabolism, and growth rate of the voles Clethrionomys rufocanus and C. glareolus in FinLond
.
Ann. zool. Soc. Zool. Botan. Fennicae Vanamo
24
,
1
58
.
Pearson
,
O. P.
(
1947
).
The rate of metabolism of some small mammals
.
Ecology
28
,
127
145
.
Pearson
,
O. P.
(
1960
).
Oxygen consumption and bioenergetics of harvest mice
.
Physiol. Zool
.
33
,
152
160
.
Peters
,
R. H.
(
1983
).
The Ecological Implications of Body Size
.
Cambridge
:
Cambridge University Press
.
329
pp.
Platt
,
W.
(
1974
).
Metabolic rates of short-tailed shrews
.
Physiol. Zool
.
47
,
75
90
.
Propre
,
D. W.
and
Gale
,
C. C.
(
1970
).
Endocrine thermoregulatory responses to local hypothalamic warmings in unanesthetized baboons
.
Am. J. Physiol
.
219
,
202
207
.
Reinking
,
L. N.
,
Kilgore
,
D. L.
,
Fairbanks
,
E. S.
and
Hamilton
,
J. D.
(
1977
).
Temperature regulation in normothermic black-tailed prairie dogs, Cynomys ludovicianus
.
Comp. Biochem. Physiol
.
57A
,
161
165
.
Riedesel
,
M. L.
and
Williams
,
B. A.
(
1976
).
Continuous 24-hr oxygen consumption studies of Myotis velifer
.
Comp. Biochem. Physiol
.
54A
,
95
99
.
Rosenmann
,
M.
,
Morrison
,
P. R.
and
Feist
,
P.
(
1975
).
Seasonal changes in the metabolic capacity of red-backed voles
.
Physiol. Zool
.
48
,
303
313
.
Rousseeuw
,
P. J.
and
Leroy
,
A. M.
(
1987
).
Robust Regression and Outlier Detection
.
New York
:
John Wiley and Sons
.
329
pp.
Rubner
,
M.
(
1883
).
Ueber den Einfluss der Körpergrösse auf Stoffund Kraftwechsel
.
Z. Biol
.
19
,
535
562
.
Rubsamen
,
K.
,
Heller
,
R.
,
Lawrenz
,
H.
and
Engelhardt
,
W. V.
(
1979
).
Water and energy metabolism in the rock hyrax (Procavis habessinica)
.
J. comp. Physiol
.
131
,
303
309
.
Sarrus
,
F.
and
Rameaux
,
J. F.
(
1838-1839
).
Rapport sur un mémoire adressé a l’Académie royale de Médecine. Commissaire Robiquet et Thillaye, rapporteurs
.
Bull. Acad. r. Med., Paris
3
,
1094
1100
.
Scheck
,
S. H.
(
1982
).
A comparison of thermoregulation and evaporative water loss in the hispid cotton rat, Signodon hispidus texianus, from northern Kansas and south-central Texas
.
Ecology
63
,
361
369
.
Schmidt-Nielsen
,
K.
(
1984
).
Scaling. Why is Animal Size so Important?
Cambridge
:
Cambridge University Press
.
241
pp.
Schmidt-Nielson
,
K.
,
Crawford
,
E. C.
,
Newsome
,
A. E.
,
Rawson
,
K. S.
and
Hammel
,
H. T.
(
1967
).
Metabolic rate of camels. Effect of body temperature and dehydration
.
Am. J. Physiol., Lond
.
212
,
341
346
.
Schmidt-Nielsen
,
K.
,
Dawson
,
T. J.
,
Hammel
,
H. T.
,
Hinds
,
D.
and
Jackson
,
D. C.
(
1965
).
The jack rabbit - a study in its desert survival
.
Hvalradets Skr
.
48
,
125
142
.
SchoLonder
,
P. F.
,
Hock
,
R.
,
Walters
,
V.
and
Irving
,
L.
(
1950
).
Adaptation to cold in arctic and tropical mammals and birds in relation to body temperature, insulation, and basal metabolism
.
Biol. Bull. mar. biol. Lab., Woods Hole
99
,
259
271
.
Sherer
,
J.
and
Wunder
,
B. A.
(
1979
).
Thermoregulation of a semi-aquatic mammal, the muskrat, in air and water
.
Acta theriol
.
24
,
249
256
.
Shkolnik
,
A.
and
Borut
,
A.
(
1969
).
Temperature and water relations in two species of spins mice (Acomys)
.
J. Mammal
.
50
,
245
255
.
Shkolnik
,
A.
and
Schmidt-Nielsen
,
K.
(
1976
).
Temperature regulation in hedgehogs from temperate and desert environments
.
Physiol. Zool
.
49
,
56
64
.
Silver
,
H.
,
Holter
,
J. B.
,
Colovos
,
N. F.
and
Hayes
,
H. H.
(
1969
).
Fasting metabolism of white-tailed deer
.
J. Wildl. Mgmt
33
,
490
498
.
Smith
,
A. P.
,
Nagy
,
K. A.
,
Fleming
,
M. R.
and
Green
,
B.
(
1982
).
Energy requirements and water turnover in free-living Leadbeater’s possums, Gymnobelideus leadbeateri (Marsupialia. Petauridac)
.
Aust. J. Zool
.
30
,
737
749
.
Speakman
,
J. R.
(
1990
).
On Blum’s four dimensional geometric explanation for the 0.75 exponent in metabolic allometry
.
J. theor. Biol
.
144
,
139
141
.
Staicu
,
C. I.
(
1982
).
Restricted and General Dimensional Analysis. Treatment of Experimental Data
.
Tunbridge Wells, Kent
:
Abacus Press
.
303
pp.
Stitt
,
J. T.
and
Hardy
,
J. D.
(
1971
).
Thermoregulation in the squirrel monkey (Saimin sciureus)
.
J. appl. Physiol
.
31
,
48
54
.
Taylor
,
C. R.
and
Lymen
,
C. P.
(
1967
).
A comparative study of the environmental physiology of an East African antelope, the eLond, and the Hereford steer
.
Physiol. Zool
.
40
,
280
295
.
Taylor
,
C. R.
,
Robertshaw
,
D.
and
Hofmann
,
R.
(
1969a
).
Thermal panting. A comparison of wildebeest and zebu cattle
.
Am. J. Physiol
.
217
,
907
910
.
Taylor
,
C. R.
and
Rowntree
,
V. J.
(
1973
).
Temperature regulation and heat balance in running cheetahs. A strategy for sprinters?
Am. J. Physiol
.
224
,
848
851
.
Taylor
,
C. R.
and
Sale
,
J. B.
(
1969
).
Temperature regulation in the hyrax
.
Comp. Biochem. Physiol
.
31
,
903
907
.
Taylor
,
C. R.
,
Spinage
,
C. A.
and
Lyman
,
C. P.
(
1969b
).
Water relations of the waterbuck, and East African antelope
.
Am. J. Physiol
.
217
,
630
634
.
Tegowska
,
E.
and
Gebczynski
,
M.
(
1975
).
Oxygen consumption and behavior of the golden hanster at different temperatures
.
Acta theriol
.
20
,
227
235
.
Terroine
,
E. F.
and
Trautman
,
S.
(
1927
).
Influence de la température extérieure sur la production calorique des homéothermes et la loi des surfaces
.
Anns physiol, physicochim. Biol
.
3
,
422
457
.
Tucker
,
V. H.
(
1965
).
Oxygen consumption, thermal conductance, and torpor in the California pocket mouse, Perognathus californiens
.
J. cell. comp. Physiol
.
65
,
393
404
.
Vleck
,
D.
(
1979
).
The energy cost of burrowing by the pocket gopher Thomomys bottae
.
Physiol. Zool
.
52
,
122
136
.
von Hoesslin
,
H.
(
1888
).
Ueber die Ursache der scheinbaren Abhfingigkeit des Umsatzes von der Grosse der Körperoberflâche
.
Du Bois-Reymond Arch. Anat. Physiol
.
11
,
323
379
.
Wang
,
L. C. H.
and
Hudson
,
J. W.
(
1970
).
Some physiological aspects of temperature regulation in the normothermic and torpid hispid pocket mouse, Perognathus hispidus
.
Comp. Biochem. Physiol
.
32
,
275
293
.
Wang
,
L. C. H.
and
Hudson
,
J. W.
(
1971
).
Temperature regulation in normothermic and hibernating eastern chipmunk, Tamias striatus
.
Comp. Biochem. Physiol
.
38A
,
59
90
.
Wang
,
L. C. H.
,
Jones
,
D. L.
,
MacArthur
,
R. A.
and
Fuller
,
W. A.
(
1973
).
Adaptation to cold. Energy metabolism in an atypical lagomorph, the Arctic hare (Lepus arcticus)
.
Can. J. Zool
.
51
,
841
846
.
Weiner
,
J.
(
1977
).
Energy metabolism of the roe deer
.
Acta theriol
.
22
,
3
24
.
Weiner
,
J.
and
Górecki
,
A.
(
1981
).
Standard metabolic rate and thermoregulation in five species of Mongolian small mammals
.
J. comp. Physiol
.
145
,
127
132
.
Wells
,
R. T.
(
1978
).
Thermoregulation and activitity rhythms in the hairy-nosed wombat, Lasiorhinus latifrons (Owen)
.
Aust. J. Zool
.
26
,
639
651
.
Whitford
,
W. G.
and
Conley
,
M. I.
(
1971
).
Oxygen consumption and water metabolism in a carnivorous mouse
.
Comp. Biochem. Physiol
.
40 A
,
797
803
.
Whittow
,
G. C.
and
Gould
,
E.
(
1976
).
Body temperature and oxygen consumption of the pentail shrew (Ptilocercus lowit)
.
J. Mammal
.
57
,
754
756
.
Whittow
,
G. C.
,
Gould
,
E.
and
Rand
,
D.
(
1977a
).
Body temperature, oxygen consumption, and evaporative water loss in a primitive insectivore, the moon rat, Echinosorex gymnurus
.
J. Mammal
.
58
,
233
235
.
Whittow
,
G. C.
,
Scammell
,
C. A.
,
Leong
,
M.
and
Rand
,
D.
(
1977b
).
Temperature regulation in the smallest ungulate, the lesser mouse deer (Tagulus javanicus;)
.
Comp. Biochem. Physiol
.
56A
,
23
26
.
Wieser
,
W.
(
1984
).
A distinction must be made between the ontogengy and phylogeny metabolism in order to understand the mass exponent of energy metabolism
.
Respir. Physiol
.
55
,
1
9
.
Willems
,
N. J.
and
Armitage
,
K. B.
(
1975
).
Thermoregulation and water requirements in semi-arid and motane populations of the least chipmunk Eutamias minimum. I. Metabolic rate
.
Comp. Biochem. Physiol
.
51A
,
717
722
.
Withers
,
P. C.
(
1978
).
Bioenergetics of a ‘primitive’ mammal, the cape golden mole
.
S. Afr. J. Sci
.
74
,
347
348
.
Worthen
,
G. L.
and
Kilgore
,
D. L.
(
1981
).
Metabolic rate of pine marten in relation to air temperature
.
J. Mammal
.
62
,
624
628
.
Wunder
,
B. A.
(
1970
).
Temperature regulation and the effect of water restriction on Merriam’s chipmunk, Eutamias merriami
.
Comp. Biochem. Physiol
.
33
,
385
403
.
Yousef
,
M. K.
and
Dill
,
D. B.
(
1969
).
Resting energy metabolism and cardiovascular activity in the burro, Equus asinus
.
J. appl. Physiol
.
27
,
229
232
.
Yousef
,
M. K.
,
Johnson
,
H. D.
,
Bradley
,
W. G.
and
Seif
,
S. M.
(
1974
).
Tritiated waterturnover rate in rodents: desert and mountain
.
Physiol. Zool
.
47
,
153
162
.
Zervanos
,
S. M.
(
1975
).
Seasonal effects of temperature on the respiratory metabolism of the collared peccary (Tayassu tajacu)
.
Comp. Biochem. Physiol
.
50A
,
365
371
.