The central pattern generator controlling ventilation in the crab can generate two distinct motor programmes, which determine the direction of water flow during irrigation of the gills. An interneurone has been identified that depolarizes when the ventilatory motor output switches from forward to reverse ventilation and remains depolarized for the duration of the reverse motor programme. Depolarization of this neurone by intracellular current injection causes a switch in the motor programme from forward to reverse ventilation, which persists for the duration of the current step. Hyperpolarization of this cell during reverse ventilation terminates the reverse motor programme. The possible role of this reversal switch interneurone is considered in the context of the observed changes in the activity of other ventilatory interneurones and motor neurones during reverse ventilation.
An interneurone mediating motor programme switching in the ventilatory system of the crab
R. A. DiCaprio; An interneurone mediating motor programme switching in the ventilatory system of the crab. J Exp Biol 1 November 1990; 154 (1): 517–535. doi: https://doi.org/10.1242/jeb.154.1.517
Download citation file:
Advertisement
Cited by
So long Andy and welcome Monica
We say a fond farewell to Andy Biewener who, after 20 years and steering hundreds of manuscripts through peer review, will be stepping down from his role as JEB Editor. We are delighted to welcome Monica Daley to the team in his place.
Supporting early-career researchers
As a journal published by The Company of Biologists, we champion early-career researchers. Find out more about the practical solutions available to help this vital community navigate the first stages of their careers.
Neuroethology of number sense across the animal kingdom
Andreas Nieder considers the fundamentally different types of brains of diverse and distantly related animal species that give rise to number skills across the animal kingdom.
Hiking trails ideal for sauntering grizzlies
New measurements reveal that grizzly bears use similar amounts of energy as humans when walking and prefer to take routes with a gradient of less than 10%, which explains why they sometimes turn up on human hiking trails that are shallow for our use and are also ideal for grizzlies.
Upcoming grant deadlines
Grants awarded by The Company of Biologists help scientists travel, attend events and host sustainable activities. Make a note of the upcoming application deadlines and find out more about the grants on offer:
Sustainable Conferencing Grants
17 May 2021
Travelling Fellowships
31 May 2021
Scientific Meeting Grants
4 June 2021