Osteoglossomorph fishes are characterized by the possession of three sets of jaws used during the capture, maceration and swallowing of prey. One of these jaw systems is a remarkable tongue-bite apparatus used during the intraoral crushing and shredding of prey. Kinematics of the tongue-bite apparatus were quantified, using 200 framess−1 video and film records of feeding in three genera of osteoglossomorph fishes (Osteoglossum, Pantodon and Notopterus) to examine the biomechanics and function of this mechanical system. Two distinct chewing behaviors associated with the tongue-bite apparatus were identified: raking and open-mouth chewing. In all three species, raking behavior involves holding the prey firmly in the mandibular jaws while the teeth of the tongue-bite apparatus are moved into the prey. However, other aspects of raking behavior are significantly different among the species: for example, only Notopterus uses extensive posterior movement of the pectoral girdle to pull basihyal teeth through the prey. In both Osteoglossum and Pantodon there is little motion of the pectoral girdle, and neurocranial elevation plays the major mechanical role in prey reduction, but there are also kinematic differences between Osteoglossum and Pantodon during raking. The kinematics of open-mouth chewing behavior are also significantly different among the three species. Thus, osteoglossomorph fishes share a similar morphology of the tongue-bite apparatus derived from a common ancestor, but have acquired independent kinematic specializations associated with its use.
Kinematics of the Tongue-Bite Apparatus in Osteoglossomorph Fishes
CHRISTOPHER P. J. SANFORD, GEORGE V. LAUDER; Kinematics of the Tongue-Bite Apparatus in Osteoglossomorph Fishes. J Exp Biol 1 November 1990; 154 (1): 137–162. doi: https://doi.org/10.1242/jeb.154.1.137
Download citation file:
Advertisement
Cited by
In the field: an interview with Martha Muñoz

Martha Muñoz is an Assistant Professor at Yale University, investigating the evolutionary biology of anole lizards and lungless salamanders. In our new Conversation, she talks about her fieldwork in Indonesia, Costa Rica, the Dominican Republic and the Appalachian Mountains, including a death-defying dash to the top of a mountain through an approaching hurricane.
Call for new preLighters
(update)-CallForPreLighters.png?versionId=3981)
preLights is the preprint highlighting community supported by The Company of Biologists. At the heart of preLights are our preLighters: early-career researchers who select and write about interesting new preprints for the research community. We are currently looking for new preLighters to join our team. Find out more and apply here.
Graham Scott in conversation with Big Biology

Graham Scott talks to Big Biology about the oxygen cascade in mice living on mountaintops, extreme environments for such small organisms. In this JEB-sponsored episode, they discuss the concept of symmorphosis and the evolution of the oxygen cascade.
Trap-jaw ants coordinate tendon and exoskeleton for perfect mandible arc
-AntJaws.png?versionId=3981)
Trap-jaw ants run the risk of tearing themselves apart when they fire off their mandibles, but Greg Sutton & co have discovered that the ants simultaneously push and pull the mandibles using energy stored in a head tendon and their exoskeleton to drive the jaws in a perfect arc.
Hearing without a tympanic ear
-Review.png?versionId=3981)
In their Review, Grace Capshaw, Jakob Christensen-Dalsgaard and Catherine Carr explore the mechanisms of hearing in extant atympanate vertebrates and the implications for the early evolution of tympanate hearing.