The influence of series elastic structures on the dynamics of the contractile machinery was examined in the gastrocnemius medialis (GM) of five male Wistar rats, with respect to enhancement of work of a muscle-tendon complex after active stretch. Imposed isotonic and isokinetic contractions were preceded by either an isometric phase (PI) or an active stretch (PS). The effects of fibre length differences at the onset of shortening, due to differences of extension of tendinous structures, were studied. For the isotonic experiments fibre length and shortening velocity were estimated 30 ms after release and compared with the PI length-velocity curve determined at the same force level. For shortening above the optimum length, about half of the enhanced shortening found after prestretch could be explained by PS-PI fibre length differences. Below the optimum length, PS shortening velocity was somewhat lower than expected on the basis of length-velocity characteristics. Enhancement of work output due to stretch was different for isokinetic and isotonic shortening. In isokinetic shortening, following prestretch, fibre work was limited because of enhanced shortening of the tendinous structures. In stretch-shortening cycles imposed on a muscle-tendon complex, the length of the complex affected all prestretch effects, i.e. potentiation of the contractile element, contractile element interaction with the tendinous structures, and elastic energy release. It is concluded that, besides potentiation effects and enhanced elastic energy release, the influence of series elastic structures on fibre dynamics determines active stretch-induced work enhancement. The contribution by these mechanisms to this work enhancement depends largely on the type of stretch-shortening cycle.

This content is only available via PDF.