Identified neurones in the leech Whitmania pigra have a stable morphology with bilaterally symmetrical branching arborizations, and with axons on both sides arranged symmetrically in the connectives. Each anterior pagoda cell (AP) receives electrical and/or chemical synaptic input from mechanoreceptive cells on both sides of the body. The position in the body can be discriminated by the postsynaptic responses of the APs: as a rule, the responses to input from contralateral receptive neurones are stronger than those to input from ipsilateral ones, and the neurone with its receptive field on the dorsal side produces a stronger response than the neurone with a ventrally sited receptive field. APs integrate postsynaptic potentials and spikes. There are no connections between the two AP cells and so it is possible that positional discrimination depends upon a circuit comparing the inputs.

After the body wall has been cut round and rotated by 180°, the mechanoreceptive cells and annular erector motoneurones reinnervate the body wall strictly according to their original orientation, and repair is bilaterally synchronous. This eliminates a role for target cell guidance, particularly in the adult leech. When an extra Retzius cell is implanted into cultured ganglia, synapses develop between the host and the implanted neurone. Such synapses generally show lower coupling ratios or PSP fluctuations. However, the specific electrical connection between the Retzius cells shows a normal coupling ratio.

This content is only available via PDF.