The processing of mechanosensory signals responsible for the reflex adjustment of the posture or movement of the legs of the locust is described in terms of the actions and connections of identified neurones. Signals can be followed from the major classes of exteroceptors of a leg, through their various integrative stages in the central nervous system to their emergence as specific patterns in known motor neurones. Particular emphasis is placed on the integrative roles of two classes of local interneurones. The spiking local interneurones map the leg as a series of overlapping receptive fields and reverse the sign of the afferent input. The nonspiking local interneurones control the output of the motor neurones by the graded release of chemical transmitter and can adjust the gain of a local reflex depending on the position and movements of the joints of that leg. The reflex movements of one leg must not impair the stability of the animal and must therefore be influenced by events at the other legs. Populations of intersegmental interneurones convey sensory information from one segment to another to ensure such coordination. These interneurones do not produce stereotyped intersegmental reflexes but, instead, alter the performance of a local reflex in a distant leg by making synaptic connections with nonspiking local interneurones. These connections change the effectiveness of the outputs to the motor neurones and consequently the local reflex. The local interneurones therefore play a crucial role both in the production of local reflexes and in the integration of these actions with the movements of the other legs.

This content is only available via PDF.