Our experiments show that octopamine receptors are present on the developing follicles of an insect, Rhodnius prolixus. Application of D,L-octopamine decreased the duration and overshoot of calcium-dependent action potentials (APs), and increased the intrafollicular concentration of cyclic AMP. The threshold concentration of D,L-octopamine for the reduction in electrical excitability was between 1 and 5×10−7moll−1, and maximal effects of a 40–50% reduction in AP overshoot and duration were apparent at 10−4moll−1. At concentrations above 10−5moll−1, a small (<10%) hyperpolarization of the resting potential was also apparent. Effects of D,L-octopamine on oocyte excitability were independent of these small shifts in resting potential.

Current injection experiments, in which calcium entry was blocked by cobalt, demonstrated that D,L-octopamine reduced membrane resistance at both hyperpolarizing and depolarizing potentials. Octopamine did not affect the maximum rate of rise of the AP, dV/dtmax, which is an indicator of inward calcium current. It is suggested that octopamine may mediate its effects on excitability through an increase in a voltage-dependent potassium conductance.

Application of other phenolamines indicated a rank order of potency of D, Loctopamine > D,L-synephrine > tyramine. The α-adrenergic agonists clonidine, naphazoline and tolazoline were without significant effect at 10−5-10−3moll−1. Reduction of excitability by D,L-octopamine was effectively blocked by phentolamine and metoclopramide. Yohimbine and gramine were less effective as antagonists. Possible functions of octopamine receptors in insect follicles are discussed.

This content is only available via PDF.