Unlike most pelagic crustaceans, the deep-sea shrimp Notostomus gibbosus (A. Milne-Edwards) (Oplophoridae) is positively buoyant, possessing a dorsally enlarged carapace which contains a low-density fluid. This fluid comprises 43% of the animal's wet mass, has a low pH, and gives a lift of 17.7 mg ml−1; when this fluid is drained, the animal sinks. Low density is achieved by the replacement of less buoyant ions with ions which reduce density via two mechanisms: a change in total solute mass by the use of ions of lesser mass, and an ion-specific disruption of the structure of water molecules (resulting in an increase in fluid volume) caused by ions having large, positive partial molal volumes. The presence of large amounts of trimethylamine (Me3NH+), a relatively large, heavy ion which, together with NH4+, replaces nearly 90 % of the Na+ in the carapace fluid, results in little change in the total solute mass of the carapace fluid of N. gibbosus (33.2‰) relative to sea water (approximately 34.1‰). Reduced fluid density is primarily a result of the large, positive partial molal volumes of Me3NH+ and NH4+, rather than a function of reduced solute masses.
Ion Replacement as a Buoyancy Mechanism in a Pelagic Deep-Sea Crustacean
N. K. SANDERS, J. J. CHILDRESS; Ion Replacement as a Buoyancy Mechanism in a Pelagic Deep-Sea Crustacean. J Exp Biol 1 September 1988; 138 (1): 333–343. doi: https://doi.org/10.1242/jeb.138.1.333
Download citation file:
Advertisement
Cited by
In the field: an interview with Martha Muñoz

Martha Muñoz is an Assistant Professor at Yale University, investigating the evolutionary biology of anole lizards and lungless salamanders. In our new Conversation, she talks about her fieldwork in Indonesia, Costa Rica, the Dominican Republic and the Appalachian Mountains, including a death-defying dash to the top of a mountain through an approaching hurricane.
Call for new preLighters
(update)-CallForPreLighters.png?versionId=3981)
preLights is the preprint highlighting community supported by The Company of Biologists. At the heart of preLights are our preLighters: early-career researchers who select and write about interesting new preprints for the research community. We are currently looking for new preLighters to join our team. Find out more and apply here.
Graham Scott in conversation with Big Biology

Graham Scott talks to Big Biology about the oxygen cascade in mice living on mountaintops, extreme environments for such small organisms. In this JEB-sponsored episode, they discuss the concept of symmorphosis and the evolution of the oxygen cascade.
Trap-jaw ants coordinate tendon and exoskeleton for perfect mandible arc
-AntJaws.png?versionId=3981)
Trap-jaw ants run the risk of tearing themselves apart when they fire off their mandibles, but Greg Sutton & co have discovered that the ants simultaneously push and pull the mandibles using energy stored in a head tendon and their exoskeleton to drive the jaws in a perfect arc.
Hearing without a tympanic ear
-Review.png?versionId=3981)
In their Review, Grace Capshaw, Jakob Christensen-Dalsgaard and Catherine Carr explore the mechanisms of hearing in extant atympanate vertebrates and the implications for the early evolution of tympanate hearing.