The gestation period for embryos of the spiny dogfish, Squalus acanthias (L.) lasts for nearly 2 years. During the latter part of this period the pups remain in the uterus and the fluid surrounding the embryos resembles sea water with respect to the major ions, but is low in pH (approx. 6), high in partial pressure of carbon dioxide (approx. 3 mmHg; 1 mmHg = 133.3 Pa), low in total carbon dioxide content (approx. 0.2 mmol l-1), and may have a total ammonia concentration of up to 22 mmol l-1. Thus the conditions under which the pups complete their development in utero is quite remarkable. The derivation of these conditions was examined in late-term pregnant females, from whose uterine horns the pups had been removed, by monitoring changes that occurred in instilled uterine sea water. The mother is responsible for reducing the pH, reducing the total carbon dioxide content and elevating the partial pressure of carbon dioxide to the levels observed in fresh-caught females, in less than 24 h. The ammonia concentration is also elevated, but this takes rather longer. The decreased pH is responsible for the accumulation of ammonia in the uterine sea water, and it also serves to protect the pups from the toxic effects of NH3, by converting it to the relatively non-toxic ionic form, NH4+. The reasons for the establishment of these uterine seawater conditions are still not evident.

This content is only available via PDF.