A model of resting membrane electrogenesis in skeletal muscles of prepupal Calliphora erythrocephala was formulated. From experiments in which reversible effects of changing extracellular K+ and Na+ activities on the membrane potential (EM) were measured, three different values of alpha (the ratio of the partial permeabilities of the membrane to Na+ and K+) were derived, each from a different range of extracellular Na+ and K+ activities. Two independent tests were carried out to determine the most realistic value of alpha. Intracellular K+ and Na+ activities and EM values were measured in a population of cells, and the EM values predicted using the Goldman-Hodgkin-Katz equation for different values of alpha. The best fit for the data was obtained for alpha = 0.036. In ionic substitution experiments, in which passive movements of Cl- were prevented or minimized, the changes in EM around the resting level could be explained with a high degree of accuracy by assuming again that alpha = 0.036. However, tests of the model by investigation of direct effects of reducing extracellular Na+ concentration over a wide range of EM values gave an anomalous result. In low-Na+ Ringer, EM values became more positive than the respective resting levels. The anomalous effect of low-Na+ Ringer on EM did not involve a change in the K+ equilibrium potential. Instead, it was probably due to a reduction in the K+ permeability of the membrane. Possible mechanisms underlying this effect are discussed.
Quantitative analysis of resting membrane electrogenesis in insect (diptera) skeletal muscle. II. Testing of a model involving contributions from potassium and sodium ions, and the anomalous effect of reducing extracellular sodium
M. B. Djamgoz, J. Dawson; Quantitative analysis of resting membrane electrogenesis in insect (diptera) skeletal muscle. II. Testing of a model involving contributions from potassium and sodium ions, and the anomalous effect of reducing extracellular sodium. J Exp Biol 1 May 1988; 136 (1): 433–449. doi: https://doi.org/10.1242/jeb.136.1.433
Download citation file:
Advertisement
Cited by
In the field: an interview with Martha Muñoz

Martha Muñoz is an Assistant Professor at Yale University, investigating the evolutionary biology of anole lizards and lungless salamanders. In our new Conversation, she talks about her fieldwork in Indonesia, Costa Rica, the Dominican Republic and the Appalachian Mountains, including a death-defying dash to the top of a mountain through an approaching hurricane.
Call for new preLighters
(update)-CallForPreLighters.png?versionId=3981)
preLights is the preprint highlighting community supported by The Company of Biologists. At the heart of preLights are our preLighters: early-career researchers who select and write about interesting new preprints for the research community. We are currently looking for new preLighters to join our team. Find out more and apply here.
Graham Scott in conversation with Big Biology

Graham Scott talks to Big Biology about the oxygen cascade in mice living on mountaintops, extreme environments for such small organisms. In this JEB-sponsored episode, they discuss the concept of symmorphosis and the evolution of the oxygen cascade.
Trap-jaw ants coordinate tendon and exoskeleton for perfect mandible arc
-AntJaws.png?versionId=3981)
Trap-jaw ants run the risk of tearing themselves apart when they fire off their mandibles, but Greg Sutton & co have discovered that the ants simultaneously push and pull the mandibles using energy stored in a head tendon and their exoskeleton to drive the jaws in a perfect arc.
Hearing without a tympanic ear
-Review.png?versionId=3981)
In their Review, Grace Capshaw, Jakob Christensen-Dalsgaard and Catherine Carr explore the mechanisms of hearing in extant atympanate vertebrates and the implications for the early evolution of tympanate hearing.