1. 1.

    The vibration-evoked startle response mediates rapid withdrawal in burrowed larval lampreys (ammocoetes). Ammocoetes withdraw in response to vibration by contracting pre-existing lateral bends in the trunk and tail, thus pulling their heads deeper into the burrow. 2. The motor effects of an ammocoete startle response are dependent on pre-existing posture. Areas of lateral body curvature contract more and exhibit larger electromyogram (EMG) amplitudes on their inner sides than on their outer sides. 3. Both of the anterior Mth and posterior Mth' (Mauthner) cells and both of the B1 and B2 (bulbar) Muller cells fired action potentials in response to vibration of the otic capsules. Both B3 and B4 Muller cells were inhibited by vibration, while M (mesencephalic) and I1 (isthmic) Muller cells were inhibited by ipsilateral vibration and excited by contralateral vibration. 4. Simultaneous action potentials in both of the anterior Mth cells were appropriate and sufficient for initiating the startle response EMG in a semi-intact preparation. 5. This study demonstrates a Mauthner-initiated startle response which activates musculature on both sides of the body to produce a rapid withdrawal movement and is thus adapted to the eel-like form and burrowed lifestyle of larval lampreys.

This content is only available via PDF.