In the leech, synapse regeneration in adults and synapse formation during embryonic development can be studied in single, identifiable cells that make precise connections with their targets. Certain cellular components, such as synaptic targets and glia, were selectively destroyed to study how the regenerating axons locate their targets, what triggers axons to start growing and what stops them. The results showed that glia and targets play only a limited role in synapse regeneration and in axon degeneration. For example, contact with the synaptic target may inhibit sprouting and availability of targets may promote it. Comparative studies on axon growth and synapse formation by interneurones in embryos showed that regeneration does not simply recapitulate embryonic development. There are clearly separate constraints on the two processes. Axon survival is a different problem. Although isolated axon segments can survive for up to a year in the leech, temperature is a major factor in survival. Axon segments in a tropical leech that regenerates synapses well at 31 degrees C degenerated within 2–3 weeks at this elevated temperature, even when regeneration was prevented. In similar leeches at room temperature (22 degrees C), segments survived for months. Overall, results in the leech support the idea that degeneration as well as regeneration share fundamental mechanisms with other invertebrates and the vertebrates, including mammals. Perhaps long-lived axon segments and other features of the leech that speed or encourage functional regeneration can now be made to operate in repair of the mammalian nervous system.

This content is only available via PDF.