1. 1.

    A new method is described for maintaining cricket Malpighian tubules in vitro. Warmed, oxygenated saline is circulated rapidly past the tubules, while the secreted urine is collected under oil for analysis. This technique allows the cricket tubules to be observed and manipulated for extended periods (6 h), in contrast to their short life (>1 h) using conventional methods.

  2. 2.

    Cricket tubules show extreme sensitivity to oxygen deprivation, such that 15 min of anoxia represents the median lethal dose (LD50) for in vitro preparations.

  3. 3.

    Homogenates of corpus cardiacum (CC) cause the rate of fluid secretion by the tubules to double. The maximum stimulation is dose-dependent over the range 0.01 to 1.0 CC. Homogenates of brain and other ganglia show much smaller stimulatory effects (0.01-0.02 CC-equivalents). Cyclic AMP mimics the increase in secretion rate, but has an inhibitory effect on the smooth muscle of the ureter.

  4. 4.

    Control preparations maintain a urine osmotic pressure (OP) that is hyperosmotic to the bath by 5–10 mosmol l−1. CC homogenate produces a decrease in urine OP to 10–12 mosmol l−1 hypo-osmotic to the bath. This suggests that active solute reabsorption is occurring in the lower tubule or ampulla.

  5. 5.

    Stimulation by CC homogenate increases the urine potassium concentration slightly less than two-fold, whereas the sodium concentration increases by a maximum of five-fold and remains at a higher concentration than potassium throughout the experiment. Tubule secretion rate is drastically inhibited in nominally sodium-free saline.

This content is only available via PDF.