The specific conductance (G) for O2 transfer by red blood cells (RBCs) of chicken and muscovy duck was measured using the experimental (stopped-flow) and analytical techniques (RBC model) previously applied to human RBC (Yamaguchi, Nguyen Phu, Scheid & Piiper, 1985). Avian RBCs behaved similarly to human RBCs: G values were of similar magnitude; G for O2 uptake decreased with time and increasing O2 saturation; G for O2 release at high levels of dithionite decreased slightly with decreasing O2 saturation; G for O2 release was higher than G for O2 uptake. The deoxygenation kinetics of oxyhaemoglobin in solution was similar for both avian species. The G measured for O2 release at high dithionite concentration, considered to represent a good approximation to intra-erythrocyte O2 diffusion conductance, averaged (in mmol min-1 Torr-1 ml-1 RBC) 0.33 for chicken and 0.25 for duck (at 41 degrees C, pH of the suspension = 7.5, O2 saturation range 0.4-0.8). These species differences can be explained by differences in cell size, the RBC volume averaging 104 micron3 in the chicken and 155 micron3 in the duck. Compared with human RBCs, the G estimates for avian RBCs are somewhat smaller than would be predicted from size differences, which can be explained by the discoid shape of mammalian RBCs which constitutes an advantage compared with the ovoid avian RBC.

This content is only available via PDF.