A fall in blood pH was generated either by infusion of HCl or by reducing gill ventilation and raising blood PCO2 in rainbow trout, Salmo gairdneri Richardson. The acute acidosis resulting from HCl infusion caused an increase in plasma adrenaline and noradrenaline concentrations, the adrenaline increase being proportional to the decrease in blood pH. Fish subjected to a prolonged respiratory acidosis, caused by a reduction in gill ventilation, showed no increase in catecholamines 24 h after the change in gill ventilation. We suggest that catecholamine levels increase in response to a pH decrease, but if acidotic conditions are maintained, circulating catecholamines return to low levels. There was a much smaller decrease in erythrocytic pH with a fall in plasma pH when catecholamine levels were high. This ameliorating effect of catecholamines on erythrocytic pH during a plasma acidosis maintains the oxygen-carrying capacity of the haemoglobin. If erythrocytic pH was decreased by increasing blood PCO2 in vitro, then there was a fall in haemoglobin oxygen-carrying capacity which was proportional to the reduction in pH. We conclude that catecholamines are released into the blood in proportion to the fall in blood pH but if the pH is maintained the circulating catecholamines return to their initial low levels. The elevated catecholamine concentrations in blood safeguard against any impairment of haemoglobin oxygen-carrying capacity by maintaining erythrocytic pH in the face of a plasma acidosis.

This content is only available via PDF.