The relationships of resting metabolism per unit mass of body to gill and body surface areas were examined by measuring gill, body surface and fin areas of carp ranging from 0.0016 to 2250g. There was a triphasic allometry for the relationship between gill area and body mass: during the prelarval (0.0016–0.003 g) and postlarval (0.003–0.2g) stages there was a positive allometry (slopes of 7.066 and 1.222, respectively), during the juvenile and later stages (0.2–2250 g) there was a negative allometry with a slope of 0.794. There was a diphasic negative allometry for the relationship between surface area of the body or the fins and body mass, with a slope of 0.596 or 0.523 during the larval stage and 0.664 or 0.724 during the juvenile and later stages, respectively. Except for the 3rd phase (juvenile to adult) of gill area, these slopes were significantly different (P<0.01) from the slope for the relationship between resting metabolism and body mass of intact carp (0.84; value from Winberg, 1956). It is considered, therefore, that gill, body surface and fin areas do not directly regulate the resting metabolism of the fish, in the larval stage at least.

This content is only available via PDF.