The steady slow climbing flight of a dragonfly, Sympetrum frequens, was filmed and analysed. By using the observed data, the mechanical characteristics of the beating wings were carefully analysed by a simple method based on the momentum theory and the blade element theory, and with a numerical method modified from the local circulation method (LCM), which has been developed for analysing the aerodynamic characteristics of rotary wings.

The results of calculations based on the observed data show that the dragonfly performs low speed flight with ordinary airfoil characteristics, instead of adopting an abnormally large lift coefficient. The observed phase advance of the hindwing, Δδ1 ≃ 80° can be fully explained by the present theoretical calculation. Similarly, the spanwise variation of the airloading and the time variations of the horizontal force, vertical force, pitching moment and torque or power can be definitely estimated within a reasonable range of accuracy in comparison with the flight data. The distribution of loading between the fore and hind pairs of wings is also clarified by the calculations.

This content is only available via PDF.