During metamorphosis insects undergo dramatic changes in both form and behaviour. Cell birth and death, as well as neurone respecification all contribute to the overall reorganization of the nervous system. Within the visual and chemosensory processing areas of the insect brain large numbers of newly-generated adult neurones are incorporated into the larval nervous system. In the abdominal ganglia, however, identified larval neurones are retained to assume a new adult role. This respecification of motor neurone function involves not only the acquisition of a new target muscle, but also the reorganization of dendritic morphology, and alterations in the interconnections between neurones. For example, an identified abdominal motor neurone in the hawkmoth, Manduca sexta, grows new dendritic processes and changes its synaptic relationship with an abdominal stretch receptor such that an interaction that was inhibitory during larval life, becomes excitatory in the adult. In another example, identified sensory neurones that evoke a larval flexion behaviour, later participate in the defense gin trap reflex that is characteristic of the pupa. In both instances the formation of new pathways is a two-step process in that the new circuits do not become behaviourally relevant as they are formed, but instead are activated abruptly at the appropriate time. For the gin trap reflex an identified peptide hormone is responsible for activating the circuit.

This content is only available via PDF.