Under certain circumstances large numbers of neurones in the mammalian central nervous system (CNS) can discharge simultaneously. An example of such activity is recorded from a hippocampal slice in the presence of agents which block synaptic inhibition. This synchronized discharge occurs spontaneously in a rhythmic fashion or may be triggered by stimulation of any afferent pathway. Its generation appears to involve local circuit interactions. The favourable conditions offered by an in vitro preparation have allowed the cellular events during this activity to be examined in some detail. Three factors appear to be critically involved in the synchronization process. Firstly, the intrinsic ability of neurones to generate bursts, secondly, the existence of powerful recurrent excitatory connections, and thirdly the absence of inhibition which normally prevents the spread of bursting activity through the recurrent connections. Computer simulations show that in a sparsely connected network of bursting neurones activity initiated in a few cells may spread through recurrent connections until eventually the whole population discharges simultaneously. Rhythmic discharges similar to those described here also underly various CNS functions including centrally-originating motor patterns. It remains to be determined whether neuronal properties and connectivity found to be important in this hippocampal rhythm may also play a role in the generation of other rhythmic activities in the mammalian CNS.
Local circuit interactions in synchronization of cortical neurones
R. K. Wong, R. Miles, R. D. Traub; Local circuit interactions in synchronization of cortical neurones. J Exp Biol 1 September 1984; 112 (1): 169–178. doi: https://doi.org/10.1242/jeb.112.1.169
Download citation file:
Advertisement
Cited by
In the field: an interview with Harald Wolf
(update)-Conversation.jpg?versionId=3747)
In our new Conversation, Harald Wolf talks about his fieldwork experiences working with desert ants in Tunisia to understand their navigation.
Propose a new Workshop
-GSWorkshop.png?versionId=3747)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Julian Dow steps down and John Terblanche joins the JEB team
-NewEditor.png?versionId=3747)
After 15 years with the journal, Julian Dow from University of Glasgow, UK, is stepping down as a Monitoring Editor. We wish Julian all the best for the future and welcome John Terblanche, Stellenbosch University, South Africa, who is joining the team. Julian talks about his long association with The Company of Biologists and the journal and John tells us about his life and career in this News article.
The capture of crude oil droplets by filter feeders at high and low Reynolds numbers
-FilterFeeders.jpg?versionId=3747)
Researchers from the University of Montreal, Canada, reveal how tiny filter feeding barnacles and Daphnia entrap and consume minute droplets of crude oil, introducing the pollutant at the bottom of the food chain.
Patterns and processes in amphibious fish
-Review.png?versionId=3747)
In their Review, Keegan Lutek, Cassandra Donatelli and Emily Standen discuss the biomechanics and neural control of terrestrial locomotion in amphibious fish. They explore how locomotor mode depends on body shape, physical constraints and phylogeny.