Active potassium ion transport by isolated midguts of Spodoptera littoralis and Manduca sexta caterpillars has been studied by electrical means. In contrast to previous studies, the electrical properties of the midguts remained essentially constant for several hours; this improvement probably results from use of an experimental saline that more closely resembles caterpillar haemolymph. The active transport could be abolished by anoxia and by a number of chemical agents, of which trimethyl tin chloride (effective at 10−9M) was the most potent. Some of these substances, including trimethyl tin chloride, may have been acting directly on the potassium ion transport system. The results of varying the ionic composition of the saline suggest that potassium is the only cation that can be transported at a significant rate. However, the rate of potassium ion transport is increased by the simultaneous presence of other inorganic cations.

Experiments to determine the ‘reversal potential’ for the active transport pathway, by varying the potassium ion concentration, suggested that this parameter was not a constant, and thus the active transport system could not be modelled by a simple equivalent electrical circuit, although the midgut epithelium is not unique in this respect. Therefore, the tissue electrical properties could not readily be correlated with the energetics of the potassium transport process, but the results are nevertheless consistent with a potassium ion: ATP ratio of greater than one, if ATP is indeed the primary energy source.

This content is only available via PDF.