I examined the aerobic trunk muscles, which are used for call production, of male frogs from species that breed in different thermal environments to test the hypothesis that cold-adapted frogs should have fewer capillaries per unit mitochondrial volume in oxidative muscles than warm-adapted frogs because of reduced mitochondrial function at low temperatures. The species of interest were the cold-temperate Pseudacris crucifer and the warm-tropical Hyla microcephala in the family Hylidae, and the cold-temperate Rana sylvatica and the warm-temperate Rana clamitans in the family Ranidae. Trunk-muscle mitochondrial volume, V(V)(mt,f), was proportionally higher in species with higher mean calling rates (number of notes per hour), irrespective of the familial affinity of a species and the thermal environment in which it vocalized. Trunk-muscle capillary length density, J(V)(c,f), was significantly lower in P. crucifer than in H. microcephala because of significantly higher mean fiber area, a-(f). Conversely, trunk-muscle J(V)(c,f) was similar in the two ranid species. Using total capillary length, J(c), and total mitochondrial volume, V(mt,m), as a measure of maximal oxygen supply and demand, respectively, in trunk muscles, J(c)-to-V(mt,m) ratios were significantly lower in cold-adapted P. crucifer (4.3 km cm(−)(3)) and R. sylvatica (4.8 km cm(−)(3)) than in warm-adapted H. microcephala (7.1 km cm(−)(3)) and R. clamitans (6.4 km cm(−)(3)). In contrast, J(c)-to-V(mt,m) ratios in the more anaerobic gastrocnemius muscle of these species was not related to the thermal environment of a species, which may reflect capillaries conforming to microcirculatory functions, e.g. lactate removal, that take precedence over oxygen delivery. Mitochondrial cristae surface area, S(V)(im,mt), in P. crucifer trunk and gastrocnemius muscles (37.7+/−1.6 and 35.9+/−1.5 m(2)cm(−)(3) respectively) was, on average, similar to mammalian values, suggesting equivalent structural capacities of muscle mitochondria in these two taxa. Taken together, the present data suggest that trunk-muscle respiratory design may reflect a capillary supply commensurate with maximal levels of oxygen delivery set by mitochondria operating at different environmental temperatures. P. crucifer and H. microcephala trunk muscles were also characterized by a high lipid content, which contrasted with a near absence of trunk-muscle lipids in R. sylvatica and R. clamitans. The extraordinarily high lipid content of P. crucifer trunk muscles (26 % of muscle volume) may serve as an auxiliary oxygen pathway to mitochondria and thus compensate in part for this tissue's reduced capillary/fiber interface. The effect of potentially high depletion rates of trunk-muscle lipid stores on metabolic rates of male frogs while calling is discussed.

Bicudo
J. E. P. W.
,
Longworth
K. E.
,
Jones
J. H.
,
Taylor
C. R.
,
Hoppeler
H.
(
1996
).
Structural determinants of maximal O2transport in muscles of exercising foxes.
Respir. Physiol
103
,
243
–.
Casley-Smith
J. R.
,
Smith
H. S.
,
Harris
J. L.
,
Wadey
P. J.
(
1975
).
The quantitative morphology of skeletal muscle capillaries in relation to permeability.
Microvasc. Res
10
,
43
–.
Conley
K. E.
,
Kayar
S. R.
,
Rösler
K.
,
Hoppeler
H.
,
Weibel
E. R.
,
Taylor
C. R.
(
1987
).
Adaptive variation in the mammalian respiratory system in relation to energetic demand. IV. Capillaries and their relationship to oxidative capacity.
Respir. Physiol
69
,
47
–.
Cruz-Orive
L. M.
,
Weibel
E. R.
(
1990
).
Recent stereological methods for cell biology: a brief survey.
Am. J. Physiol
258
,
148
–.
Desaulniers
N.
,
Moerland
T. S.
,
Sidell
B. D.
(
1996
).
High lipid content enhances the rate of oxygen diffusion through fish skeletal muscle.
Am. J. Physiol
271
,
42
–.
Dutta
A.
,
Popel
A. S.
(
1995
).
A theoretical analysis of intracellular oxygen diffusion.
J. Theor. Biol
176
,
433
–.
Egginton
S.
,
Sidell
B. D.
(
1989
).
Thermal acclimation induces adaptive changes in subcellular structure of fish skeletal muscle.
Am. J. Physiol
256
,
1
–.
Eichelberg
H.
,
Obert
H.-J.
(
1976
).
Fat and glycogen utilization in the larynx muscles of fire-bellied toads (Bombina bombina L.) during calling activity.
Cell Tissue Res
167
,
1
–.
Grafe
T. U.
(
1997
).
Use of metabolic substrates in the gray treefrog Hyla versicolor: implications for calling behavior.
Copeia
1997
,
356
–.
Harri
M. N. E.
,
Talo
A.
(
1975
).
Effect of season and temperature acclimation on the heart rate—temperature relationship in the frog, Rana temporaria.
Comp. Biochem. Physiol
50
,
469
–.
Harris
J. A.
(
1972
).
Seasonal variation in some hematological characteristics of Rana pipiens.
Comp. Biochem. Physiol
43
,
975
–.
Hoppeler
H.
,
Billeter
R.
(
1991
).
Conditions for oxygen and substrate transport in muscles in exercising mammals.
J. Exp. Biol
160
,
263
–.
Hoppeler
H.
,
Kayar
S. R.
,
Claassen
H.
,
Uhlmann
E.
,
Karas
R. H.
(
1987
).
Adaptive variation in the mammalian respiratory system in relation to energetic demand. IV. Skeletal muscles: setting the demand for oxygen.
Respir. Physiol
69
,
27
–.
Hoppeler
H.
,
Mathieu
O.
,
Krauer
R.
,
Claassen
H.
,
Armstrong
R. B.
,
Weibel
E. R.
(
1981
).
Design of the mammalian respiratory system. VI. Distribution of mitochondria and capillaries in various muscles.
Respir. Physiol
44
,
87
–.
Howard
R. D.
(
1980
).
Mating behavior and mating success in woodfrogs, Rana sylvatica.
Anim. Behav
28
,
705
–.
Hudlicka
O.
,
Hoppeler
H.
,
Uhlmann
E.
(
1987
).
Relationship between the size of the capillary bed and oxidative capacity in various cat skeletal muscles.
Pflugers Arch
410
,
369
–.
Kayar
S. R.
,
Hoppeler
H.
,
Jones
J. H.
,
Longworth
K.
,
Armstrong
R. B.
,
Laughlin
M. H.
,
Lindstedt
S. L.
,
Bicudo
J. E. P. W.
,
Groebe
K.
,
Taylor
C. R.
,
Weibel
E. R.
(
1994
).
Capillary blood transit time in muscles in relation to body size and aerobic capacity.
J. Exp. Biol
194
,
69
–.
Londraville
R. L.
,
Sidell
B. D.
(
1990
).
Ultrastructure of aerobic muscle in antarctic fishes may contribute to maintenance of diffusive fluxes.
J. Exp. Biol
150
,
205
–.
Marsh
R. L.
,
Taigen
T. L.
(
1987
).
Properties enhancing aerobic capacity of calling muscles in gray tree frogs Hylaversicolor.
Am. J. Physiol
252
,
786
–.
Mathieu
O.
,
Cruz-Orive
L.-M.
,
Hoppeler
H.
,
Weibel
E. R.
(
1983
).
Estimating length density and quantifying anisotropy in skeletal muscle capillaries.
J. Microsc
131
,
131
–.
Mathieu-Costello
O.
(
1991
).
Morphometric analysis of capillary geometry in pigeon pectoralis muscle.
Am. J. Anat
191
,
74
–.
Mathieu-Costello
O.
(
1993
).
Comparative aspects of muscle capillary supply.
Annu. Rev. Physiol
.
55
,
503
525
.
Mathieu-Costello
O.
,
Ellis
C. G.
,
Potter
R. F.
,
MacDonald
I. C.
,
Groom
A. C.
(
1991
).
Muscle capillary-to-fiber perimeter ratio: morphometry.
Am. J. Physiol
261
,
H1617
H1625
.
Mathieu-Costello
O.
,
Hoppeler
H.
,
Weibel
E. R.
(
1989
).
Capillary tortuosity in skeletal muscles of mammals depends on muscle contraction.
J. Appl. Physiol
66
,
1436
–.
Moyes
C. D.
,
Battersby
B. J.
,
Leary
S. C.
(
1998
).
Regulation of muscle mitochondrial design.
J. Exp. Biol
201
,
299
–.
Prestwich
K. N.
(
1994
).
The energetics of acoustic signaling in anurans and insects.
Am. Zool
34
,
625
–.
Prestwich
K. N.
,
Brugger
K. E.
,
Topping
M.
(
1989
).
Energy and communication in three species of hylid frogs: power input, power output and efficiency.
J. Exp. Biol
144
,
53
–.
Rosen
M.
,
Lemon
R. E.
(
1974
).
The vocal behavior of spring peepers, Hyla crucifer.
Copeia
1974
,
940
–.
Schwerzmann
K.
,
Hoppeler
H.
,
Kayar
S. R.
,
Weibel
E. R.
(
1989
).
Oxidative capacity of muscle and mitochondria: correlation of physiological, biochemical and morphometric characteristics.
Proc. Natl. Acad. Sci. USA
86
,
1583
–.
Sidell
B. D.
,
Hazel
J. R.
(
1987
).
Temperature affects the diffusion of small molecules through cytosol of fish muscle.
J. Exp. Biol
129
,
191
–.
Tyler
S.
,
Sidell
B. D.
(
1984
).
Changes in mitochondrial distribution and diffusion distances in muscle of goldfish upon acclimation to warm and cold temperatures.
J. exp. Zool
232
,
1
–.
Weber
J.-M.
(
1992
).
Pathways for oxidative fuel provision to working muscles: Ecological consequences of maximal supply limitations.
Experientia
48
,
557
–.
Wells
K. D.
(
1977
).
Territoriality and male mating success in the green frog (Rana clamitans).
Ecology
58
,
750
–.
Wells
K. D.
(
1978
).
Territoriality in the green frog (Rana clamitans): Vocalizations and agonistic behavior.
Anim. Behav
26
,
1051
–.
This content is only available via PDF.