The contractile vacuole of the freshwater protozoan Paramecium multimicronucleatum is a membrane-bound exocytotic vesicle that expels excess cytosolic water. The in vitro contractile vacuole isolated from P. multimicronucleatum along with a small amount of cytosol and confined under mineral oil showed periodic rounding and slackening at fairly regular intervals. Activity lasted for over 30 min at room temperature (24–27 degrees C). The rounding of the in vitro contractile vacuole corresponded to the increased membrane tension of the in vivo contractile vacuole that occurs immediately before fluid expulsion. Unlike the in vivo contractile vacuole, the in vitro contractile vacuole did not expel fluid, since it lacked a mechanism to form a pore. The subsequent slackening of the in vitro contractile vacuole corresponded to the fluid-filling phase of the in vivo contractile vacuole that occurs at decreased membrane tension. Fluid filling occurred in the in vitro contractile vacuole only when it was isolated together with its radial arms. In vitro membrane-bound vesicles obtained by ‘bisecting’ (although the two parts were not always identical in size) an in vitro contractile vacuole established their own independent rounding-slackening cycles. In vitro contractile vacuole vesicles could fuse again when the vesicles slackened. The fused vesicle then showed a rounding-slackening cycle with a period closer to that of the vesicle that exhibited the shorter cycle period. An additional rounding phase of the in vitro contractile vacuole could be induced by applying suction to a portion of its membrane with a micropipette when the contractile vacuole was in its slackened phase. This suggests that maximum tension development in the contractile vacuole membrane can be triggered when tension is increased in any part of the contractile vacuole membrane. The time from the start of an extra rounding phase to the next spontaneous rounding and for subsequent rounding-slackening cycles was nearly the same as that before the extra rounding phase. This implies that there is no master pacemaker to control the rounding-slackening cycle in the contractile vacuole membrane. Severed radial arms also became vesiculated and, like contractile vacuole membranes, these in vitro vesicles showed independent rounding-slackening cycles and vesicle-vesicle fusions. Thus, membrane derived from the radial arm seems to be identical in its tension-developing properties with the contractile vacuole membrane. ATP was found to be required for contractile vacuole rounding but inhibitors of actin or tubulin polymerization, such as cytochalasin B and Nocodazole, had no effect on the in vitro contractile vacuole's rounding-slackening cycle.

Allen
R. D.
,
Bala
N. P.
,
Ali
R. F.
,
Nishida
D. F.
,
Aihara
M. S.
,
Ishida
M.
,
Fok
A. K.
(
1995
).
Rapid bulk replacement of acceptor membrane by donor membrane during phagosome to phagoacidosome transformation in Paramecium
.
J. Cell Sci
108
,
1263
–.
Allen
R. D.
,
Fok
A. K.
(
1985
).
Modulation of the digestive lysosomal system in Paramecium caudatum. III. Morphological effects of cytochalasin B
.
Eur. J. Cell Biol
37
,
35
–.
Allen
R. D.
,
Fok
A. K.
(
1988
).
Membrane dynamics of the contractile vacuole complex of Paramecium
.
J. Protozool
35
,
63
–.
Allen
R. D.
,
Ueno
M. S.
,
Pollard
L. W.
,
Fok
A. K.
(
1990
).
Monoclonal antibody study of the decorated spongiome of contractile vacuole complex of Paramecium
.
J. Cell Sci
96
,
469
–.
Cohen
J.
,
Garreau de Loubresse
N.
,
Beisson
J.
(
1984
).
Actin microfilament in Paramecium: Localization and role in intracellular movement
.
Cell Motil
4
,
443
–.
Cooper
J. A.
(
1987
).
Effects of cytochalasin B and phalloidin on actin
.
J. Cell Biol
105
,
1475
–.
Dai
J.
,
Sheetz
M. P.
(
1995
).
Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers
.
Biophys. J
68
,
988
–.
De Brabander
M. J.
,
Van de Vetre
R. M. L.
,
Aerts
E. F.
,
Borges
M.
,
Jansen
P. A. G.
(
1976
).
The effect of methyl-5-(2-thienylcarbonyl]-1-H benzimidazol-1-carbamate, (R 17934; NSC 288159), a new synthetic antitumoral drug interfering with microtubules on mammalian cells cultured in vitro
.
Cancer Res
36
,
905
–.
Doberstein
S. K.
,
Baines
I. C.
,
Wiegant
G.
,
Korn
E. D.
,
Pollard
T. D.
(
1993
).
Inhibition of contractile vacuole function in vivo by antibodies against myosin-I
.
Nature
365
,
841
–.
Fok
A. K.
,
Aihara
M. S.
,
Ishida
M.
,
Nolta
K. V.
,
Steck
T. L.
,
Allen
R. D.
(
1995
).
The pegs on the decorated tubules of the contractile vacuole complex of Paramecium are proton pumps.
J. Cell Sci.
108
,
3163
3170.
Fok
A. K.
,
Allen
R. D.
(
1979
).
Axenic Paramecium caudatum. I. Mass culture and structure
.
J. Protozool
26
,
463
–.
Fok
A. K.
,
Leung
S. S.-K.
,
Chun
D. P.
,
Allen
R. D.
(
1985
).
Modulation of the digestive lysosomal system in Paramecium caudatum. II. Physiological effects of cytochalasin B, colchicine and trifluoperazine
.
Eur. J. Cell Biol
37
,
27
–.
Garreau de Loubresse
N.
,
Keryer
G.
,
Vigues
B.
,
Biesson
J.
(
1988
).
A contractile cytoskeletal network of Paramecium: the infraciliary lattice
.
J. Cell Sci
90
,
351
–.
Hausmann
K.
,
Allen
R. D.
(
1977
).
Membranes and microtubules of the excretory apparatus of Paramecium caudatum
.
Eur. J. Cell Biol
15
,
303
–.
Hiramoto
Y.
(
1963
).
Mechanical properties of sea urchin eggs. I. Surface force and elastic modulus of the cell membrane
.
Exp. Cell Res
32
,
76
–.
Murray
J. M.
,
Weber
A.
(
1974
).
The cooperative action of muscle proteins
.
Scient. Am
230
,
59
–.
Naitoh
Y.
,
Allen
R. D.
,
Tani
T.
(
1999
).
Tension-induced tension developing mechanism in the membrane of the contractile vacuole of Paramecium
.
Mol. Biol. Cell
10
,
244
–.
Naitoh
Y.
,
Tominaga
T.
,
Ishida
M.
,
Fok
A. K.
,
Aihara
M. S.
,
Allen
R. D.
(
1997
).
How does the contractile vacuole of Paramecium multimicronucleatum expel fluid? Modeling the expulsion mechanism
.
J. Exp. Biol
99
,
123
–.
Patterson
D. J.
(
1980
).
Contractile vacuole and associated structures: Their organization and function
.
Biol. Rev
55
,
1
–.
Patterson
D. J.
,
Sleigh
M. A.
(
1976
).
Behavior of the contractile vacuole of Tetrahymena pyriformis W: A redescription with comments on the terminology
.
J. Protozool
23
,
410
–.
Tominaga
T.
,
Allen
R. D.
,
Naitoh
Y.
(
1998
).
Electrophysiology of the in situ contractile vacuole complex of Paramecium reveals its membrane dynamics and electrogenic site during osmoregulatory activity
.
J. Exp. Biol
201
,
451
–.
Tominaga
T.
,
Allen
R. D.
,
Naitoh
Y.
(
1998
).
Cyclic changes in the tension of the contractile vacuole complex membrane control its exocytotic cycle
.
J. Exp. Biol
201
,
2647
–.
Torres
A.
,
Delgado
P.
(
1989
).
Effects of cold and Nocodazole treatments on the microtubular systems of Paramecium in interphase
.
J. Protozool
36
,
113
–.
Yoneda
M.
,
Dan
K.
(
1972
).
Tension at the surface of the dividing sea-urchin egg
.
J. Exp. Biol
57
,
575
–.
This content is only available via PDF.