In hydrostatic skeletons, it is the internal fluid under pressure surrounded by a body wall in tension (rather than a rigid lever) that enables the stiffening of the organism, the antagonism of muscles and the transmission of force from the muscles to the environment. This study examined the ontogenetic effects of body size on force production by an organism supported with a hydrostatic skeleton. The earthworm Lumbricus terrestris burrows by forcefully enlarging crevices in the soil. I built a force-measuring apparatus that measured the radial forces as earthworms of different sizes crawled through and enlarged pre-formed soil burrows. I also built an apparatus that measured the radial and axial forces as earthworms of different sizes attempted to elongate a dead-end burrow. Earthworms ranging in body mass m(b) from hatchlings (0.012 g) to adults (8.9 g) exerted maximum forces (F, in N) during active radial expansion of their burrows (F=0.32 m(b)(0.43)) and comparable forces during axial elongation of the burrow (F=0.26 m(b)(0.47)). Both these forces were almost an order of magnitude greater than the radial anchoring forces during normal peristalsis within burrows (F=0.04 m(b)(0.45)). All radial and axial forces scaled as body mass raised to the 2/5 power rather than to the 2/3 power expected by geometric similarity, indicating that large worms exert greater forces than small worms on an absolute scale, but the difference was less than predicted by scaling considerations. When forces were normalized by body weight, hatchlings could push 500 times their own body weight, while large adults could push only 10 times their own body weight.

Alexander
R. McN
(
1985
).
The maximum forces exerted by animals
.
J. Exp. Biol
115
,
231
–.
Berrigan
D.
,
Lighton
J. R. B.
(
1993
).
Bioenergetic and kinematic consequences of limblessness in larval Diptera
.
J. Exp. Biol
179
,
245
–.
Biewener
A. A.
(
1989
).
Scaling body support in mammals: limb posture and muscle mechanics
.
Science
245
,
45
–.
Brackenbury
J.
(
1997
).
Caterpillar kinematics
.
Nature
390
,
453
–.
Casey
T. M.
(
1991
).
Energetics of caterpillar locomotion: biomechanical constraints of a hydraulic skeleton
.
Science
252
,
112
–.
Chapman
G.
(
1950
).
On the movement of worms
.
J. Exp. Biol
27
,
29
–.
Chapman
G.
(
1958
).
The hydrostatic skeleton in the invertebrates
.
Biol. Rev
33
,
338
–.
Chapman
G.
(
1975
).
Versatility of hydraulic systems
.
J. Exp. Zool
194
,
249
–.
Close
R. I.
(
1972
).
Dynamic properties of mammalian skeletal muscles
.
Physiol. Rev
52
,
129
–.
Full
R. J.
,
Yamauchi
A.
,
Jindrich
D. L.
(
1995
).
Maximum single leg force production: cockroaches righting on photoelastic gelatin
.
J. Exp. Biol
198
,
2441
–.
Gray
J.
,
Lissmann
H. W.
(
1938
).
Studies in locomotion. VII. Locomotory reflexes in the earthworm
.
J. Exp. Biol
15
,
506
–.
Heffernan
J. M.
,
Wainwright
S. A.
(
1974
).
Locomotion of the holothurian Euapta lappa and redefinition of peristalsis
.
Biol. Bull
147
,
95
–.
Hidaka
T.
,
Kuriyama
H.
,
Yamamoto
T.
(
1969
).
The mechanical properties of the longitudinal muscle in the earthworm
.
J. Exp. Biol
50
,
431
–.
Katz
S. L.
,
Gosline
J. M.
(
1992
).
Ontogenetic scaling and mechanical behavior of the tibiae of the African desert locust (Schistocerca gregaria)
.
J. Exp. Biol
168
,
125
–.
Keller
J. B.
,
Falkovitz
M. S.
(
1983
).
Crawling of worms
.
J. Theor. Biol
104
,
417
–.
Kier
W. M.
,
Van Leeuwen
J. L.
(
1997
).
A kinematic analysis of tentacle extension in the squid Loligo pealei
.
J. Exp. Biol
200
,
41
–.
Kram
R.
(
1996
).
Inexpensive load carrying by rhinocerous beetles
.
J. Exp. Biol
199
,
609
–.
Maitland
D. P.
(
1992
).
Locomotion by jumping in the Mediterranean fruit-fly larva Ceratitis capitata
.
Nature
355
,
159
–.
Marsh
R. L.
(
1988
).
Ontogenesis of contractile properties of skeletal muscle and sprint performance in the lizard Dipsosaurus dorsalis
.
J. Exp. Biol
137
,
119
–.
Newell
G. E.
(
1950
).
The role of the coelomic fluid in the movements of earthworms
.
J. Exp. Biol
27
,
110
–.
O'Reilly
J. C.
,
Ritter
D. A.
,
Carrier
D. R.
(
1997
).
Hydrostatic locomotion in a limbless tetrapod
.
Nature
386
,
269
–.
Queathem
E.
(
1991
).
The ontogeny of grasshopper jumping performance
.
J. Insect Physiol
37
,
129
–.
Quillin
K. J.
(
1998
).
Ontogenetic scaling of hydrostatic skeletons: geometric, static stress and dynamic stress scaling of the earthworm Lumbricus terrestris
.
J. Exp. Biol
201
,
1871
–.
Quillin
K. J.
(
1999
).
Ontogenetic scaling of peristaltic crawling in the earthworm Lumbricus terrestris
.
J. Exp. Biol
202
,
661
–.
Seymour
M. K.
(
1970
).
Skeletons of Lumbricus terrestris L. and Arenicola marina (L.)
.
Nature
228
,
383
–.
This content is only available via PDF.