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Thermal physiological traits and plasticity of metabolism are
sensitive to biogeographic breaks in a rock-pool marine shrimp
Aura M. Barria1, Leonardo D. Bacigalupe2, Nelson A. Lagos3 and Marco A. Lardies1,*

ABSTRACT
Populations of broadly distributed species commonly exhibit
latitudinal variation in thermal tolerance and physiological plasticity.
This variation can be interrupted when biogeographic breaks occur
across the range of a species, which are known to affect patterns of
community structure, abundance and recruitment dynamics. Coastal
biogeographic breaks often impose abrupt changes in environmental
characteristics driven by oceanographic processes and can affect
the physiological responses of populations inhabiting these areas.
Here, we examined thermal limits, performances for heart rate
and plasticity in metabolic rate of the intertidal shrimp Betaeus
emarginatus from seven populations along its latitudinal range
(∼3000 km). The distribution of this species encompass two breaks
along the southeastern Pacific coast of Chile: the northern break is
characterized by sharp discontinuities in upwelling regimes, and the
southern break constitutes a major discontinuity in water conditions
(temperature, pH, dissolved oxygen and nutrients), coastline
topography and divergence of main oceanographic currents. For
B. emarginatus, we found higher plasticity in metabolism at the sites
sampled at the biogeographic breaks, and at the site subjected to
seasonal upwelling. The variation inmetabolic ratewas not consistent
with increasing latitude and it was not affected by breaks. The
lower and upper thermal limits were lower in populations around
breaks, although the optimum temperature decreased towards
higher latitudes. Overall, whereas thermal limits and plasticity of
metabolism are related to biogeographic breaks, metabolic rate is
not related to increasing latitude or the presence of breaks in the
sampled range.

KEY WORDS: Intraspecific variation, Thermal limits, Intertidal,
Upwelling, Heart rate, Thermal performance curve, Reaction norm

INTRODUCTION
Because of its close relationship with physiological performance,
ambient temperature (TA) plays a key role in determining the
geographic distribution of ectotherms (Pörtner, 2001; Sunday et al.,
2012), as it is usually correlated with their upper and lower limits of
thermal tolerance and physiological sensitivity (Sunday et al.,
2011). Also, it is thought that TA imposes selective pressure that

gradually shapes the phenotypic responses of populations of a
species along geographic clines (Castañeda et al., 2004; Lardies
et al., 2011), leading to intraspecific variation in physiological traits
in widely distributed species inhabiting contrasting environments
(Gaitán-Espitía et al., 2014; Stillman, 2002). In ectotherms,
performance traits (e.g. growth, reproduction, physiology) vary
with differences in TA, and this relationship can be described by a
thermal performance curve (TPC; Angilletta, 2009; Huey and
Berrigan, 2001) that includes three parameters: (1) critical thermal
minimum (CTmin), (2) critical thermal maximum (CTmax) and (3)
optimum temperature (Topt). Specifically, CTmin and CTmax

represent the TA below and above which performance is at a
minimum, and Topt represents the TA at which performance is
maximized. As such, TPCs have been used to mechanistically
describe the variation in thermal tolerance among natural
populations of ectothermic species (Kingsolver et al., 2004;
Latimer et al., 2011; Schulte et al., 2011). The results of such
studies indicate that the parameters of TPCs usually co-vary along
geographic clines (e.g. latitude), reflecting the ability of ectotherms
to adapt, at least in part, to their environments (Fangue et al., 2006;
Klok and Chown, 2003; Lardies et al., 2004b).

The metabolic rate (MR) of an organism is linked to its pattern of
energy use, and as such, represents a holistic measure of the ‘pace of
life’ (Gillooly et al., 2001), and is suggested to reflect the energetic
cost of adaptation to a particular thermal environment (Clarke,
2003; Clarke and Fraser, 2004). The relationship between MR and
TA also varies systematically across the ranges of ectotherms, in
concert with environmental gradients (Addo-Bediako et al., 2002).
Two contrasting patterns of geographic variation have been
described for the MRs of ectotherms (Bozinovic et al., 2011;
Burton et al., 2011). One body of evidence indicates that
populations at lower latitudes, experiencing warmer temperatures
throughout the year, exhibit higher MRs than their conspecifics at
higher/colder latitudes (Angilletta, 2001; Barria and Bacigalupe,
2017; Lardies et al., 2004a; Peck, 2002). In contrast, the metabolic
cold adaptation (MCA) hypothesis states that at equivalent TA, the
MR of ectothermal species and populations from cold climates is
greater than that of their warm-climate relatives (Addo-Bediako
et al., 2002; Gaston et al., 2009; Jacobsen and Brodersen, 2008).
This compensation for low TA has been thought to be a general
evolutionary adaptation of ectotherms from high latitudes or
altitudes (Chown and Gaston, 1999; Gaston et al., 2009).
However, although some studies support the MCA hypothesis for
terrestrial insects (Addo-Bediako et al., 2002; Gaston et al., 2009),
other authors have failed to find an increase in metabolism at lower
TA in marine organisms (Clarke, 1991; Rastrick and Whiteley,
2011; Steffensen, 2002).

The capacity of marine intertidal ectotherms to adjust their
physiological response to daily and seasonal fluctuations of
environmental variables can define not only their vertical
distributions, but also their geographical ranges (Pörtner, 2001;Received 16 March 2018; Accepted 31 July 2018
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Sunday et al., 2011). Along latitudinal gradients, local adaptation to
different environmental regimens can lead to differences in thermal
tolerance and physiological plasticity among populations of broadly
distributed species (e.g. Fangue et al., 2006; Gaitán-Espitía et al.,
2013, 2014; Gardiner et al., 2010; Lardies et al., 2011; Pörtner,
2001). In general, the scope of physiological plasticity is usually
proportional to the magnitude of variation in the TA that a species
experiences in their native habitat: populations inhabiting more
variable thermal environments (i.e. higher latitude) are expected to
have broader tolerance limits and acclimation capacities than
individuals inhabiting more stable environments (Calosi et al.,
2010; Chown et al., 2004; Ghalambor et al., 2006; Janzen, 1967;
Naya et al., 2011; Stevens, 1989). Environmental variability
increases toward higher latitudes, and it is also high in coastal
ocean areas placed in biogeographic breaks, where geological,
climatological and oceanographic processes have delimited abrupt
changes in the environmental regimes that are concordant with the
limits in the distribution of species (Bowen et al., 2016; Broitman

et al., 2018 in press). In broadly distributed species, biogeographic
breaks might be contained in their range, and populations located in
these areas could exhibit differences in abundance (Lancellotti and
Vásquez, 1999; Sink et al., 2005), population dynamics (Broitman
et al., 2001; Navarrete et al., 2008; Rivadeneira et al., 2002; Staaf
et al., 2010), and also in their phenotypic response (Lardies et al.,
2008; Ragionieri et al., 2009; Sanford et al., 2003). However, the
environmental variability at biogeographic breaks has been poorly
related to the physiological capacities and plasticity of broadly
distributed species.

Two main biogeographic breaks have been reported along the
range of the intertidal shrimp Betaeus emarginatus (H. Milne
Edwards 1837) (Fig. 1) on the southeastern Pacific coast of Chile
(Camus, 2001). The northern break is located around 30–32°S
and is characterized by sharp discontinuities in upwelling regimes
(Thiel et al., 2007). The southern break, around 42°S, where the
geomorphology of the coastline changes from a continuous, almost
straight line to a fragmented one, is characterized by inner seas, bays
and channels, and is where the West Wind Drift over the Pacific
Ocean splits into the northern Humboldt Current and the southern
Cape Horn Current (Camus, 2001; Thiel et al., 2007; Montecino
and Lange, 2009; Silva et al., 2009; Waters, 2008), the intensity of
which varies throughout the year, inducing a higher environmental
heterogeneity in this area. As such, these breaks define three
biogeographic provinces: (1) the (northern) Peruvian province
(from 4 to 30°S), (2) the (southern) Magellanic province (from
between 41 and 43°S to 54°S) and (3) an intermediate area between
both provinces (from 30°S to 41°S) (Fig. 1A). Therefore, along the
range of B. emarginatus, we predict higher plasticity in MR in
populations located near the biogeographic breaks, because of the

List of symbols and abbreviations
CTmax critical thermal maximum
CTmin critical thermal minimum
fH heart rate
MCA metabolic cold adaptation
MR metabolic rate
SST sea surface temperature
TA environmental temperature
Topt optimum temperature
TPC thermal performance curve
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Fig. 1. Study sites and thermal regime. (A) Sampled populations across the distributional range of Betaeus emarginatus in Chile and (B) thermal regime
according to the sea surface temperature (SST) data gathered at each sampling site.
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higher environmental heterogeneity. Furthermore, we predict that
in addition to an overall effect of latitude on thermal limits (CTmin

and CTmax) and parameters of the TPC, populations at the
biogeographic breaks should exhibit a stepped cline in
comparison to populations further from the breaks.

MATERIALS AND METHODS
Study populations and specimen maintenance
During austral spring, B. emarginatus specimens were collected by
hand at low tide from seven locations along the Chilean coast
(ca. 3000 km), thus encompassing the majority of the species’
latitudinal range (Fig. 1A). From the sampled sites, animals were
taken to the laboratory at the Universidad Adolfo Ibañez by land or
air, in trips that lasted between 4 and 6 h. For transportation,
individuals were placed in a plastic box (3 liter capacity), filled with
humid towels with seawater from the sampling sites; this box was
then placed in a plastic cooler containing ice packs to ensure that
animals were at a temperature of 10±1°C. At the laboratory,
individuals were maintained in common garden conditions for
1 month before the experiments were conducted, at constant
temperature (14±1°C) in artificial seawater, prepared by dissolving
sea salt (Instant Ocean©, Spectrum Brands, Blacksburg, VA, USA)
in distilled water to obtain a salinity of 33 ppt. Shrimps were
exposed to a light:dark cycle of 12 h:12 h and fed with Instant
Algae® (Isochrysis 1800, Reed Mariculture, Campbell, CA, USA)
and aquarium shrimp food three times a week. MR, CTmin and
CTmax measurements were taken in animals from all of the sampled
locations. However, owing to logistical limitations, TPCs from
cardiac activity estimates were only measured in individuals
from four populations: Antofagasta, Talcaruca, El Tabo and
Valdivia. These populations, however, still encompass most of the
distribution of B. emarginatus in Chile and the northern
biogeographic break.

Physiological measurements
Metabolic rate
Oxygen consumption, here used as a proxy for MR (Brown et al.,
2004), was estimated in 179 specimens that were sequentially
exposed to two experimental temperatures; each temperature
acclimation period lasted 30 days. The first acclimation temperature
reflected the mean annual in situ sea surface temperature (SST; 14±
1°C; Fig. 1B). The second acclimation temperature was the average
maximum temperature experienced by all populations along their
latitudinal range (20±1°C; Fig. 1B). A 113 ml acrylic respirometry
chamber with photosensitive, non-oxygen consumptive sensors
was used for respirometric analysis. MR was measured using a
temperature-compensatedMicrox optic fiber O2meter (Microx TX3,
PreSens, Regensburg, Germany) connected to a recirculating water
bath by a flow-through cell housing (FTCH-PSt1, PreSens) and with
a stirring regime of 20–30 rpm. The optic fiber was calibrated in a
saturated sodium sulfite (Na2O3S, 0% air saturation) solution and in
aerated artificial seawater (100% air saturation), checking for sensor
drift before and after each trial. In addition, control chambers
containing only aerated artificial seawater were used to quantify
background microbial oxygen consumption. After calibration,
oxygen concentration (% air saturation) in the seawater was
measured for 60 min (recorded every 5 s). The first and last 5 min
were discarded in order to avoid possible disturbance when the fiber
was inserted or removed. Thus, the oxygen estimates are averages of
the remaining 50 min of measurements. Before and after each
measurement, shrimp were placed briefly on a paper towel to remove
excess water, and then wet body mass was recorded using an

analytical balance (AFA-180LC, Adam Equipment, Oxford, CT,
USA) with ±0.001 mg precision. The average of both body mass
measurements was used in the statistical analyses. To obtain MR in
units of g O2 l

−1, the slope of the relationship between the decrease of
oxygen in the chamber and time of incubation (h) was calculated
and normalized to fresh mass. Shrimp were not fed 24 h prior to
physiological measurements to standardize hunger levels, because
the cost of digesting and assimilating food (specific dynamic action;
SDA) represents a large component of an animal’s energy
expenditure (Secor, 2009). In addition, to remove the possible
confounding effects of sex (Valverde et al., 2009), only male shrimp
of similar size were used in the experiments.

Heart rate for thermal performance curves
We estimated the heart rate (fH) of individuals exposed to one of two
thermal gradients: the full gradient included the temperatures of 2, 3,
4, 5, 6, 8, 10, 12, 14, 15, 17, 19, 21, 23, 25, 26 and 27°C, and the
short gradient included only those temperatures up to and including
14°C. We measured the cardiac activity in individuals from
Antofagasta (nFull=4; nShort=1), Talcarura (nFull=7; nShort=12), El
Tabo (nFull=11; nShort=9) and Valdivia, where all individuals were
exposed to full thermal gradient (nFull=11). Animals were
individually separated in plastic chambers with six subdivisions
(200×200×100 mm), where they were attached gently to the bottom
of each chamber using glued tape, ensuring that they would not
move during the measurements. The chambers were transferred to a
thermoregulated bath (WRC-P8, Daihan, Korea), previously
adjusted during one of the temperature trials. fH was estimated
using the non-invasive method described by Burnett et al. (2013),
where heart beat is monitored by an infrared-light-emitting diode
glued to the carapace above the pericardial sinus of each
individual, from which the signal was amplified (AMP-03,
Newshift Lda, Leiria, Portugal) and recorded using a
oscilloscope (Handyscope HS4, TiePie Engineering, Sneek, The
Netherlands). fH signals were viewed and analyzed using TiePie
Multi Channel software (version 1.0.29.0, TiePie Engineering).
We recorded for 15 min, and the first and the last 5 min were
discarded in order to avoid any noise or erroneous recordings
generated by animal manipulation, and the results were expressed
as the number of beats during 1 min (beats min−1; for details, see
Gaitán-Espitía et al., 2017). Measurements of cardiac activity were
performed for each shrimp at the same time of day to avoid the
effects of a possible circadian rhythm of respiration. The order of
the temperature trials was randomized in order to avoid the
confounding effects of time.

Thermal limits
Wemeasured the thermal limits in individuals from Iquique (n=26),
Antofagasta (n=26), Talcarura (n=15), El Tabo (n=14), Lenga
(n=8), Valdivia (n=28) and Chiloe (n=10). The CTmin and CTmax

were determined as the TA below and above which the ventilatory
activity (frequency of pleopods beating) ceased within 1 min
(Hervant et al., 1997). Each individual was placed in a 25 ml
incubation flask that was transferred to a thermoregulated bath
(WRC-P8, Daihan), adjusted at a starting temperature of 8 or 24°C,
to measure CTmin and CTmax, respectively, for 5 min. After these
incubations, the temperature in the bath was decreased (or
increased) at a rate of 1°C min−1. To track the temperature inside
the thermoregulated bath, we used a similar chamber with a HOBO
data logger (model U23-003, Onset Computer Corporation, Bourne,
MA, USA). Every minute or at every 1°C change in temperature,
ventilatory activities were measured directly using low-energy red
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light with a binocular magnifier (2.5×). When an animal was unable
to beat its pleopods after 1 min, we let it recover at ambient
temperature, at 20°C (CTmin) or in a cold chamber, at 2°C (CTmax).

Statistical analysis
Linear models
We used a linear mixed modeling approach to evaluate the effects
of body mass, latitude, acclimation temperature (14 and 20°C),
province (Peruvian, intermediate area and Magellanic) and
biogeographic breaks (yes: Talcaruca and Chiloe; no: Iquique,
Antofagasta, El Tabo, Lenga and Valdivia) on metabolic rate, whilst
taking into account that each individual was acclimated and
measured at both 14 and 20°C, and that individuals from different
localities were captured and measured in different periods.
Therefore, individual id and date of capture were included as
random factors in the analyses. Hypothesis testing was carried out
using likelihood ratio tests of nested models based on restricted
maximum likelihood (REML; random factors) or maximum
likelihood (ML; fixed factors). The best model was found after a
series of tests that compared the full model (that include
interactions) against alternative models that were simplified by the
exclusion of single predictors. Body mass was log10 transformed to
meet the assumption of a normal distribution. Critical thermal
limits were analyzed using a linear model, including body
mass and latitude as covariates and province and biogeographic
breaks as fixed factors. Statistical analyses were performed using
the lme4 package (https://cran.r-project.org/web/packages/lme4/
index.html) implemented in R platform 3.4.4 (http://www.
R-project.org/).

Thermal acclimatory capacity of metabolism
We determined the variation in the capacity for acclimation of MR
using two approximations. First, we estimated the mean of the
slope of the reaction norm as the difference in MR in individuals
exposed to 14 and 20°C along the thermal interval experienced
(6°C). Differences in the slope of the reaction norm between
populations were determined using a simple linear model,
including population as a fixed factor and the mass of individuals
as a covariate. Second, we calculated the index of phenotypic
plasticity, based on maximum and minimum standardized means
(Seebacher et al., 2015; Valladares et al., 2006). This index, which
ranges from 0 to 1, was calculated for each population as the
difference between the minimum and maximum mean values of the
acclimation temperature (i.e. 6°C) divided by the maximum mean
value. This broad approach was chosen given our interest in
exploring the plasticity of metabolism at the interpopulation level
and assuming that genetic relatedness was significantly greater
within the sampled populations than among them (Gianoli and
Valladares, 2012).

Thermal performance curve fitting
Cardiac activity was fitted to the Brier̀e temperature-scaling model
with four parameters (Brier̀e et al., 1999). The Brier̀e model is
characterized by an asymmetrical, unimodal curve that provides the
best description of thermal performance by allowing for a rapid
drop-off of the curve beyond the thermal optimum (Shi and Ge,
2010). This model has been used to characterize the thermal
dependency of the intrinsic rate of increase of terrestrial insects
(Estay et al., 2014), the metabolic rate (Mertens et al., 2015) and
photosynthetic activity of seagrasses (Adams et al., 2017),
and metabolic and consumption rates of a sea urchin (Lemoine
and Burkepile, 2012). Here, fH was a positive function of

temperature T (°C):

TPC fH ¼ aTðT � TminÞðTmax � TÞ1=m: ð1Þ
TPCs for each population were fitted using the nonlinear

regression function nlsLM (this incorporates the Levenberg–
Marquardt type nls.lm fitting algorithm) in the package
minpack.lm (https://cran.r-project.org/web/packages/minpack.lm/
index.html) in the R environment (http://www.R-project.org/).
The Brier̀e non-linear model allowed us to directly estimate the
biological parameters contained in the TPC fitted for each
population, where Tmax represents the upper threshold (CTmax)
and Tmin represents the lower threshold (CTmin), and a and m are
empirical constants. The optimum temperature (Topt) in Eqn 1
depends only on Tmax, Tmin and m, and was calculated as:

Topt ¼

2mTmaxþðmþ1ÞTminþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4m2T2

maxþðmþ1Þ2T2
min�4m2TminTmaxÞ

q

4mþ2
:

ð2Þ

RESULTS
Linear models
In B. emarginatus, MR was negatively affected by body mass (log10
scale: b=−0.360±0.060 s.e.; χ21=30.512, P<0.001) and increased in
warm (20°C) acclimated individuals (χ21=39.925, P<0.001; Fig. 2).
Individual ID as well as date of measurement were important factors
explaining part of the variation in MR; nevertheless, MR was not
affected by latitude, province or the presence of a biogeographic
break (Table 1).

CTmax was not affected by biogeographic break (F1,120=0.998,
P=0.320) or province (F2,120=2.685, P=0. 072), but was negatively
affected by body mass (log10 scale: b=−2.417±0.831 s.e.;
F1,120=10.772, P=0.001) and latitude (b=−0.09±0.070 s.e.;
F1,120=6.574, P=0.012). That is, larger individuals and those
inhabiting colder localities showed less tolerance to higher
temperatures (Fig. 3A). CTmin was not affected by body mass
(F1,120=1.026, P=0.313), latitude (F1,120=1.096, P=0.297) or
biogeographic breaks (F1,120=0.169, P=0.682), but was affected
by province (F2,120=15.223, P<0.001). In particular, individuals
from the Magellanic province (Chiloe) showed a higher tolerance to
colder temperatures than individuals from both the intermediate area
and the Peruvian province, which did not differ in terms of tolerance
to cold (Fig. 3B).

Thermal acclimatory capacity of metabolism
The slope of the reaction norm (Fig. 4) was not affected by body
mass (F1,169=2.932, P=0.089), but was affected by population
(F6,169=2.905, P=0.01). A significant higher slope of the reaction
norm was found in individuals from El Tabo. The plasticity index
showed that the greatest variation in MR means between
temperature trials occurred in Talcaruca, El Tabo and Chiloe
(Table 2, Fig. 5).

Thermal performance curve fitting
The cardiac activity (Fig. 6), fitted to the Brier̀e model, estimated an
increase in CTmax toward higher latitudes, while CTmin could not be
calculated for all populations (owing to the differential degree of
grouping and spacing of measurements along the temperature axis).
Therefore, to estimate Topt from the model, we set CTmin to 4°C,
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which was the mean value found in all thermal limit experiments.
The Topt estimated from Eqn 2 decreased toward southern latitudes
(Table 3).

DISCUSSION
It is well known that populations of broadly distributed species
exhibit latitudinal variation in thermal limits and physiological
plasticity (Gaston et al., 2009; Ghalambor et al., 2006; Spicer and
Gaston, 1999). Although latitudinal variation in environmental
temperatures has been shown to induce gradual intraspecific
variation in phenotypic responses (Sunday et al., 2011), the
presence of biogeographic breaks within a species’ range should
induce abrupt changes (stepped cline) in these parameters. In the
present study, we found that (1) the MR of B. emarginatus did not
covary with latitude, and it was not related with the presence of
biogeographic breaks, nor with the province from which the
individuals were sampled, but (2) we found higher plasticity of MR
in populations located at the biogeographic breaks (30 and 42°S).
Furthermore, (3) both measurements of plasticity (slopes of the
reaction norms and plasticity index) were higher for individuals

from El Tabo, which is subjected to seasonal upwelling. Regarding
the thermal limits, (4) whereas the CTmax decreased toward higher
latitudes, the CTmin did not show variation in the sampled
geographic range, except in Chiloe, at the southern break, where
CTmin and CTmax were significantly lower. Finally, the fitted
thermal performance curves showed that (5) Topt decreased
gradually towards higher latitudes.

Clinal patterns in physiological variation along natural
environmental gradients are common in ectotherms (Bozinovic
et al., 2011; Gaston et al., 2009; Lardies et al., 2004a; Sunday et al.,
2011). Overall, analyses of large-scale physiological patterns can
provide a powerful way to understand the causes of this variation
(Chown et al., 2002; Clarke and Johnston, 1999) and its
implications, given the prospects of substantial environmental
change (Bozinovic et al., 2011; Gaston et al., 2009; Hoffmann et al.,
2003; Sinclair et al., 2003; Somero, 2010). In terrestrial ectotherms,
there is a clear pattern of broader thermal limits toward higher
latitudes, but in marine species, the amplitude of this thermal
window remains constant across latitudes, and thus, latitudinal
trends in thermal tolerance seem to be more complex in this group
(Sunday et al., 2011). Here, we found that the amplitude of the
thermal window bounded by CTmin and CTmax was the same along
the latitudinal gradient sampled. However, we found that CTmin and
CTmax were significantly lower in shrimp taken from Chiloe, where
the southern break and an important topographical breakup of the
coastline occur, and individuals are subjected to high inputs of cold
freshwater and cold nutrient-rich waters, saturated in CO2 and with
low dissolved oxygen and pH (Vargas et al., 2017). In contrast, Topt,
estimated from B. emarginatus heart rate TPCs, decreased gradually
toward higher latitudes, in accordance with previous findings of
intraspecific variation in ectotherm TPC parameters (Castañeda
et al., 2004; Wilson, 2001). Despite the fact that the study of
variation in TPCs between populations has been cited as a
fundamental tool to understand the response of ectotherms to
future thermal scenarios (Bozinovic and Pörtner, 2015), very little is
known about variation in Topt on latitudinal scales. Here, we found
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Fig. 2. Comparison of thermal reaction
norms of metabolic rate (MR) of
B. emarginatus along the latitudinal
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about those means.

Table 1. Selection of the best model describing the variation in
metabolic rate of Betaeus emarginatus

Metabolic rate∼mass+latitude+break+province+
acclimation+(1|ID)+(1|date)

Full model Excluded variable χ2 d.f. P

Fixed factor Break 1.6268 1 0.2021
Province 1.0643 2 0.5873
Acclimation 39.925 1 >0.001

Random factor ID 4.4557 1 0.03479
Date 12.575 1 >0.001

Covariates Latitude 0.7847 1 0.3757
Mass 30.512 1 >0.001

The full model was compared with models in which one of the variables was
excluded using a chi-squared test. Bold indicates significance at P<0.05.
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that although Topt decreases toward higher latitudes, CTmax values
were higher in colder sites. These results highlight that individuals
inhabiting warmer habitats have a reduced capacity to maintain
thermal homeostasis above Topt because it is closer to their upper
thermal limit (see Gaitán-Espitía et al., 2014).
In coastal marine environments, species distribution patterns

are often attributed to gradients or discontinuities in temperature
(Somero, 2002; reviewed in Philippart et al., 2011). Such
distribution patterns are influenced and maintained by ectothermic
physiological and biochemical adaptations to variation in
temperature across latitudes (Somero, 2002, 2010). The metabolic

rate of an organism is linked to its pattern of energy use, and is
suggested to reflect the energetic cost of adaptation to a particular
thermal environment (Clarke, 2003; Clarke and Fraser, 2004; see
also Watson et al., 2013). The MCA hypothesis states that for
broadly distributed species, an elevated metabolic rate should
increase the fitness of populations at higher latitudes by allowing a
higher energy uptake for growth and reproduction (Gotthard et al.,
2000; Addo-Bediako et al., 2002). However, if species can
compensate by growing in the next favorable season, an elevated
metabolism should increase the cost of living (Clarke, 1991, 1993).
Therefore, it was not likely that we would find that the metabolism
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Fig. 3. Latitudinal variation in the thermal limits of B. emarginatus. (A) Mean values for critical thermal maximum (CTmax) and (B) critical thermal minimum
(CTmin), estimated in seven populations of B. emarginatus. Error bars represent 95% confidence intervals.
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of an iteroparous species such as B. emarginatuswas adjusted to the
pattern of variation described by the MCA hypothesis, also because
this shrimp exhibits latitudinal compensation for growth size
(Conover and Present, 1990; Yamahira and Conover, 2002) and
high-latitude populations exhibit larger body sizes (Lardies and
Wehrtmann, 1997), enhancing many aspects of organismal
performance (Kingsolver and Huey, 2008). In contrast, as MR is
assumed to be mechanistically dictated by temperature, according to
universal temperature dependence (Gillooly et al., 2001), the
latitudinal decrease in mean SST along the sampled range of
B. emarginatus should induce a reduction in metabolism in
populations at higher latitudes, because organisms are adapted
evolutionarily to live at different temperatures (Clarke, 2003).
Despite this, we found no evidence of a clear latitudinal pattern in
MR for B. emarginatus between populations from different thermal
environments. This could be related to larval dispersal times of
approximately 3 months in Central Chile (Wehrtmann and López,
2003; M. A. Lardies, unpublished observations/data). Also, it has
been reported that the influence of biogeographic breaks on
phenotypic variation is greater for species with shorter larval
stages (Sánchez et al., 2011; Tellier et al., 2009; Zakas et al., 2009)
in contrast with species with prolonged larval stages (Barria et al.,
2014; Cárdenas et al., 2009; Macaya and Zuccarello, 2010). Also,
the lack of a clear latitudinal pattern in the metabolism of
B. emarginatus could be reflecting that the thermal stress that
intertidal organisms experience does not increase as a simple
function of decreasing latitude (Helmuth et al., 2002, 2006). Rather,
local conditions of air temperature, solar radiation, substrate angle,

wave splash and fog are likely influential factors (Helmuth et al.,
2006). In fact, although the annual in situ mean SST of marine
intertidal zones in Chile is lower at higher latitudes, the difference in
minimum and maximum SST at a given site varies along the range
sampled here. This thus reflects local variation in solar irradiation
(Broitman et al., 2001), the influence of atmospheric circulation and
rainfall variability (Barros and Silvestri, 2002), and the effect of
other oceanographic processes (Thiel et al., 2007).

In contrast, our results suggest that metabolic plasticity is higher in
populations subjected to seasonal upwelling in the intermediate area
and also in populations located near environmental discontinuities at
the biogeographic breaks (for similar results, see Aravena et al., 2014;
Segovia et al., 2017). Ectotherms that occupy heterogeneous thermal
environments are hypothesized to have evolved greater thermal
plasticity to optimize performance despite exposure to environmental
variability (Angilletta, 2009; Chown and Terblanche, 2007;
Ghalambor et al., 2006; Janzen, 1967). However, in intertidal
zones, species are subjected to fast and frequent temperature changes
that are both predictable (e.g. associated with circadian, tidal and
seasonal cycles) and unpredictable (i.e. irregular short-term changes
that are especially pronounced during low tide or the intensity of
wind-driven upwelling). This being said, although predictable
environmental variation is thought to increase thermal plasticity,
unpredictable environmental variability does not favor plasticity, as
environmental cues can be misleading (Berrigan and Scheiner, 2004;
Kingsolver and Huey, 1998; Tufto, 2000). Despite this, both
plasticity measurements used in the present study showed that
individuals from El Tabo, subjected to seasonal wind-driven
upwelling that intensifies during austral spring and summer, and
also varies according to equatorial wind events and local topographic
characteristics (Aravena et al., 2014; Vargas et al., 2017) had higher
plasticity compared with shrimps of the other populations. Also,
when comparing the index of phenotypic plasticity among
populations, we found that populations of B. emarginatus located
near the biogeographic breaks had higher plasticity ofmetabolic rates.

Intraspecific variation in physiological trait means and plasticity
are of increased importance in the context of climate change
(Bozinovic et al., 2011; Somero, 2010). So far, to address their
response to future environmental scenarios, species are usually
treated as if individuals from all populations in the species’ range
respond equally to environmental pressures (Banta et al., 2012;
Kawecki, 2008), but there is ample evidence that within a species,

Table 2. Measurements of plasticity [plasticity index and slope of
the reaction norm (mean±s.d.)] estimated for the metabolic rate of
Betaeus emarginatus in response to thermal acclimation treatments
of 14 and 20°C

Population Plasticity index Slope reaction norm N

Iquique 0.150 0.06±0.046 25
Antofagasta 0.056 0.055±0.051 27
Talcaruca 0.208 0.04±0.039 29
El Tabo 0.422 0.127±0.109 30
Lenga 0.070 0.085±0.128 27
Valdivia 0.031 0.061±0.067 29
Chiloe 0.222 0.042±0.018 10

N, number of individuals measured per population.
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Fig. 5. Latitudinal variation in the reaction norms of themetabolic rate per individual, measured at 14 and 20°C in seven populations ofB. emarginatus.
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populations have distinct phenotypic responses to environmental
conditions (Chown et al., 2004; Chown and Gaston, 1999; Gaston
et al., 2009; Stillman, 2002). Populations that experience a wide
degree of variability in environmental conditions are expected to be
most plastic in traits adaptive in those conditions (Sultan and
Spencer, 2002; Van Tienderen, 1991). In the face of climate change,
plasticity may play a key role in enabling the persistence of
populations (Chevin et al., 2010); thus, plasticity of populations
along the latitudinal gradient that the range of a species
encompasses will influence species’ responses to the changing

climate and will be important for determining species distributions
in novel climatic landscapes. Specifically, these responses could
provide a buffer period during which niche evolution (i.e. adaptive
niche expansion or shift) might occur (Chevin et al., 2010). Finally,
this kind of study is required to make the necessary link between
ecological physiology and macroecology and to help develop a
global understanding of organismal responses in marine systems to
variations in thermal environment.
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