It has previously been shown that near-infrared light can positively affect the physiology of damaged tissue. This is likely mediated by the modulation of metabolic activity via cytochrome c oxidase (COX), the rate of ATP production, and generation of reactive oxygen species. It has been suggested that this process can be influenced by light, with different wavelengths potentially having different efficacy. The impact of these effects on retinal health is not yet well understood. To answer this question, we first induced photoreceptor damage in the eyes of white mutant D. melanogaster through prolonged exposure to bright light. We then investigated the recovery of retinal health following exposure to different wavelengths of near-infrared light (670, 750, 810, 850, and 950 nm) over the course of 10 days. Retinal health was assessed through electroretinograms and fluorescent imaging of live photoreceptors. We found that all treatments except for 950 nm light facilitated the recovery of the electroretinogram response in previously light-damaged flies — though efficacy varied across treatments. All near-infrared exposed groups showed at least some improvement in retinal organization and auto-fluorescence compared to an untreated recovery control. We also showed that our results do not stem from a fly specific artifact relating to opsin photoconversion. Finally, we made use of a bioassay to show enhanced ATP levels in light treatments. This study represents a much-needed direct comparison of the effect of a multitude of different wavelengths and contributes to an emerging body of literature that highlights the promise of phototherapy.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.