It has previously been shown that near-infrared light can positively affect the physiology of damaged tissue. This is likely mediated by the modulation of metabolic activity via cytochrome c oxidase (COX), the rate of ATP production, and generation of reactive oxygen species. It has been suggested that this process can be influenced by light, with different wavelengths potentially having different efficacy. The impact of these effects on retinal health is not yet well understood. To answer this question, we first induced photoreceptor damage in the eyes of white mutant D. melanogaster through prolonged exposure to bright light. We then investigated the recovery of retinal health following exposure to different wavelengths of near-infrared light (670, 750, 810, 850, and 950 nm) over the course of 10 days. Retinal health was assessed through electroretinograms and fluorescent imaging of live photoreceptors. We found that all treatments except for 950 nm light facilitated the recovery of the electroretinogram response in previously light-damaged flies — though efficacy varied across treatments. All near-infrared exposed groups showed at least some improvement in retinal organization and auto-fluorescence compared to an untreated recovery control. We also showed that our results do not stem from a fly specific artifact relating to opsin photoconversion. Finally, we made use of a bioassay to show enhanced ATP levels in light treatments. This study represents a much-needed direct comparison of the effect of a multitude of different wavelengths and contributes to an emerging body of literature that highlights the promise of phototherapy.
Assessing recovery of Drosophila melanogaster photoreceptors with different wavelengths of red and infrared light
Present address: National Institute of Health, Bethesda, MD, 20892
- Award Group:
- Funder(s): Directorate for Biological Sciences
- Award Id(s): IOS-1856241
- Funder(s):
- Views Icon Views
-
Article Versions Icon
Versions
- Accepted Manuscript 17 February 2025
- Share Icon Share
-
Tools Icon
Tools
- Search Site
Michael Meece, Shubham Rathore, Diego Zagazeta, Elke K. Buschbeck; Assessing recovery of Drosophila melanogaster photoreceptors with different wavelengths of red and infrared light. J Exp Biol 2025; jeb.250043. doi: https://doi.org/10.1242/jeb.250043
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Announcing the 2024 JEB Outstanding Paper Prize shortlist and winner

Every year JEB celebrates early-career researchers through the Outstanding Paper Prize. We recognise the shortlisted ECRS that contributed to 11 remarkable studies published in 2024 and congratulate the winner, Elise Laetz, from University of Groningen. See how else JEB supports and promotes ECRs.
Inside the Intergovernmental Panel on Climate Change with Hans-Otto Pörtner

During the past two decades, Hans-Otto Pörtner has steered climate change policy as a co-Chair of IPCC Working Group II. He tells us about the experience in this Perspective.
Photosynthesis turns symbiotic sea anemone's tentacles toward sun

Snakelocks sea anemones point their tentacles, packed with symbiotic algae, toward the sun so their lodgers can photosynthesize, and now Vengamanaidu Modepalli & colleagues have discovered that photosynthesis by the algae guides their host's tentacles towards the sun.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about JEB’s history and explore the journey of each of our sister journals: Development, Journal of Cell Science, Disease Models & Mechanisms and Biology Open.