In a warming world, it is crucial to understand how rising temperature affects the physiology of organisms. To investigate the effect of a warming environment on the metabolism of heterothermic bats during the costly lactation period, we characterised metabolic rates in relation to roost temperature, the bats’ thermoregulatory state (normothermia or torpor), time of day and age of juveniles. In a field experiment, we heated the communal roosts of a wild colony of Bechstein's bats (Myotis bechsteinii) every other day while measuring metabolic rates using flow-through respirometry. As expected, metabolic rates were lowest when the bats were in torpor. However, when bats were normothermic, colder temperatures had little effect on metabolic rates, which we attribute to the thermoregulatory benefits of digestion-induced thermogenesis and social thermoregulation. In contrast, metabolic rates increased significantly at temperatures above the thermoneutral zone. Contrary to our expectations, metabolic rates were not lower in heated roosts, where temperatures remained close to the bats’ thermoneutral zone, than in unheated roosts, where temperatures were more variable. Our results show that torpor and digestion-induced thermogenesis are effective mechanisms that allow bats to energetically buffer cold conditions. The finding that metabolic rates increased significantly at temperatures above the thermoneutral zone suggests that the physiological and behavioural abilities of Bechstein's bats to keep energy costs low at high temperatures are limited. Our study highlights that temperate-zone bats are well adapted to tolerate cold temperatures, but may lack protective mechanisms against heat, which could be a threat in times of global warming.
Field respirometry in a wild maternity colony of Bechstein's bats (Myotis bechsteinii) indicates higher metabolic costs above rather than below the thermoneutral zone
- Award Group:
- Funder(s): Deutsche Forschungsgemeinschaft
- Award Id(s): DFG RTG 2010
- Funder(s):
- Views Icon Views
-
Article Versions Icon
Versions
- Accepted Manuscript 23 December 2024
- Share Icon Share
-
Tools Icon
Tools
- Search Site
Janis M. Wolf, Philipp Lehmann, Gerald Kerth; Field respirometry in a wild maternity colony of Bechstein's bats (Myotis bechsteinii) indicates higher metabolic costs above rather than below the thermoneutral zone. J Exp Biol 2024; jeb.249975. doi: https://doi.org/10.1242/jeb.249975
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Sensory perception in a changing world – join us in Liverpool in March 2025
We are excited to invite you to a unique scientific conference, celebrating the 100-year anniversary of The Company of Biologists, and bringing together our different communities. The conference will incorporate the JEB Symposium Sensory Perception in a Changing World and the SEB satellite meeting. Find out more and register to join us in March 2025 in Liverpool, UK. Submit your abstract by 17 January 2025. Early-bird registration ends on 17 January 2025.
Extraordinary creatures: mantis shrimp
In our new Conversation series focusing on extraordinary creatures, Tom Cronin and Sheila Patek tell us about the incredible biology of mantis shrimp, from their complex vision to their powerful striking abilities.
Behaviour as a physiological process
In this Commentary, Shamil Debaere & colleagues argue the case for integration of behaviour into animal physiology, and advocate for behaviour to be considered as a physiological process.
Tiny ring-necked snakes keep warm heads despite their size
Some ectotherms are able to raise the temperature of certain body parts above the temperature of other regions & now Christian Fox and Albert Chung, with undergraduates from the University of Virginia, reveal that the heads of tiny ring-necked snakes can be 2.1C warmer than their tails, even though they are only 20cm long.