Many animals communicate using call and response signals, but the evolutionary origins of this type of communication are largely unknown. In most cricket species, males sing and females walk or fly to calling males. In the tribe Lebinthini, however, males produce calls that trigger a vibrational reply from females, and males use the substrate vibrations to find the responding female. Here we assess two hypotheses regarding the behavioral origin of this multimodal duet in the Lebinthini. We conducted playback experiments and measured behavioral and neuronal responses in multiple related cricket species to assess whether the precursor to the lebinthine duet was 1) a startle response to high-frequency sound, or 2) elaboration of a preexisting courtship behavior. We found behavioral similarities between the vibrational response of Lebinthini females and the acoustic startle behavior in other gryllid crickets. Specifically, the amplitude of the vibrational reply increases with male song amplitude in Lebinthini, and the magnitude of vibrations produced by two gryllid species when startled with ultrasound also correlates with the stimulus amplitude. Like in-flight startle behavior, the startle vibrations produced by perched crickets are suppressed when low-frequency sound is played simultaneously. We also observed courtship behavior in four gryllid species and found few instances of female vibration. Vibrational signals observed in Gryllus pennsylvanicus females were not correlated with male calls and occurred more frequently in pairs that did not mate after courtship. Combined, accumulating evidence supports the hypothesis that the lebinthine duet more likely evolved from a startle precursor than courtship behavior.
Multispecies comparisons support a startle response origin for a novel vibrational signal in the cricket tribe Lebinthini
- Award Group:
- Funder(s): Dartmouth College
- Funder(s):
- Award Group:
- Funder(s): Dartmouth College
- Funder(s):
- Award Group:
- Funder(s): German Research Foundation
- Award Id(s): DFG 458552427
- Funder(s):
- Award Group:
- Funder(s): Carl-Zeiss-Stiftung
- Funder(s):
- Views Icon Views
-
Article Versions Icon
Versions
- Accepted Manuscript 28 January 2025
- Share Icon Share
-
Tools Icon
Tools
- Search Site
Mia E. Phillips, Hannah Marr, Stefan Schöneich, Tony Robillard, Hannah M. ter Hofstede; Multispecies comparisons support a startle response origin for a novel vibrational signal in the cricket tribe Lebinthini. J Exp Biol 2025; jeb.249877. doi: https://doi.org/10.1242/jeb.249877
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Announcing the 2024 JEB Outstanding Paper Prize shortlist and winner

Every year JEB celebrates early-career researchers through the Outstanding Paper Prize. We recognise the shortlisted ECRS that contributed to 11 remarkable studies published in 2024 and congratulate the winner, Elise Laetz, from University of Groningen. See how else JEB supports and promotes ECRs.
Inside the Intergovernmental Panel on Climate Change with Hans-Otto Pörtner

During the past two decades, Hans-Otto Pörtner has steered climate change policy as a co-Chair of IPCC Working Group II. He tells us about the experience in this Perspective.
Photosynthesis turns symbiotic sea anemone's tentacles toward sun

Snakelocks sea anemones point their tentacles, packed with symbiotic algae, toward the sun so their lodgers can photosynthesize, and now Vengamanaidu Modepalli & colleagues have discovered that photosynthesis by the algae guides their host's tentacles towards the sun.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about JEB’s history and explore the journey of each of our sister journals: Development, Journal of Cell Science, Disease Models & Mechanisms and Biology Open.