Gill regeneration in fish varies inter and intra-specifically. The latter may be associated with myriad factors including capacity of energy metabolism. This study investigated whether mitochondrial respiration capacity influences the degree of gill regeneration, and features of mitochondria in regenerated tissue by feeding fish an experimental diet aimed at modulating mitochondrial efficiency. Fish reared on control and experimental diet were subjected to 50% filament resection on a subset of filaments on the ventral and dorsal regions of the first gill arch. Mitochondrial respiration and citrate synthase activity (CSA) were measured in the resected tips of filaments (week-0) and then in the regenerated tissue at week-20 post-resection. The degree of filament regeneration was measured at week-20 post-resection (week-20). The experimental diet reduced CSA and respiratory control ratio (RCR), and increased proton leak at week-0 which was associated with a 30% reduction in tissue regeneration compared to fish on standard diet. While CSA increased in the regenerated tissue at week-20, there was a decline in state 3 respiration, proton leak, complex IV activity, and RCR as compared to week-0 irrespective of diet. Overall, mitochondrial respiration efficiency at week-0 was positively correlated with the degree of subsequent gill tissue regeneration. Additionally, state 3 respiration and proton leak at week-20 were positively correlated with tissue regeneration, whereas CSA exhibited a negative relationship. Our results indicate that capacity of mitochondrial respiration may at least partially explain the inter-individual variations in tissue regeneration, but mitochondrial function in the regenerating tissue may be limited.
Mitochondrial respiration capacity impacts gill tissue regeneration in Atlantic salmon
- Award Group:
- Funder(s): Mitacs
- Award Id(s): GR021175
- Funder(s):
- Award Group:
- Funder(s): Genome British Columbia
- Award Id(s): GR021569
- Funder(s):
- Award Group:
- Funder(s): Genome Canada / Genomic Applications Partnership Program
- Award Id(s): GR021255
- Funder(s):
- Views Icon Views
-
Article Versions Icon
Versions
- Accepted Manuscript 27 February 2025
- Share Icon Share
-
Tools Icon
Tools
- Search Site
Ensiyeh Ghanizadeh-Kazerouni, Benjamin Negrete J., Simon R. M. Jones, Mark D. Fast, Colin J. Brauner; Mitochondrial respiration capacity impacts gill tissue regeneration in Atlantic salmon. J Exp Biol 2025; jeb.249704. doi: https://doi.org/10.1242/jeb.249704
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Announcing the 2024 JEB Outstanding Paper Prize shortlist and winner

Every year JEB celebrates early-career researchers through the Outstanding Paper Prize. We recognise the shortlisted ECRS that contributed to 11 remarkable studies published in 2024 and congratulate the winner, Elise Laetz, from University of Groningen. See how else JEB supports and promotes ECRs.
Inside the Intergovernmental Panel on Climate Change with Hans-Otto Pörtner

During the past two decades, Hans-Otto Pörtner has steered climate change policy as a co-Chair of IPCC Working Group II. He tells us about the experience in this Perspective.
Photosynthesis turns symbiotic sea anemone's tentacles toward sun

Snakelocks sea anemones point their tentacles, packed with symbiotic algae, toward the sun so their lodgers can photosynthesize, and now Vengamanaidu Modepalli & colleagues have discovered that photosynthesis by the algae guides their host's tentacles towards the sun.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about JEB’s history and explore the journey of each of our sister journals: Development, Journal of Cell Science, Disease Models & Mechanisms and Biology Open.