Ocean acidification occurs at a rate unprecedented for millions of years, forcing sessile organisms, such as oysters, to respond in the short term by relying on their phenotypic plasticity. Phenotypic plasticity has limits, tipping points, beyond which species will have to adapt or disappear. These limits could be related to the adaptation of species to different habitat variabilities. Here we expose juvenile pearl oysters, Pinctada margaritifera, to a broad range of pH and determine the response at the gross physiological, lipidome and transcriptome levels. Thus, we identify its high tolerance with low tipping points at pH 7.3-6.8 below which most physiological parameters are impacted. We then compare the transcriptomic reaction norms of the tropical subtidal P. margaritifera, with those of an intertidal temperate oyster, Crassostrea gigas, reusing data from a previous study. Despite showing similar tipping points with C. gigas, P. margaritifera exhibits strong mortalities and depletion of energy reserves below the tipping points, which is not the case for C. gigas. This divergence relies mainly on the induction of metabolic depression, an adaptation to intertidal habitats in C. gigas, but not in P. margaritifera. Our method makes it possible to detect divergences in phenotypic plasticity, probably linked to the species’ specific life-history strategies related to different habitats, which will determine the survival of species to ongoing global changes. Such an approach is particularly relevant for studying the physiology of species in a world where physiological tipping points will be increasingly exceeded.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.