Ocean acidification occurs at a rate unprecedented for millions of years, forcing sessile organisms, such as oysters, to respond in the short term by relying on their phenotypic plasticity. Phenotypic plasticity has limits, tipping points, beyond which species will have to adapt or disappear. These limits could be related to the adaptation of species to different habitat variabilities. Here we expose juvenile pearl oysters, Pinctada margaritifera, to a broad range of pH and determine the response at the gross physiological, lipidome and transcriptome levels. Thus, we identify its high tolerance with low tipping points at pH 7.3-6.8 below which most physiological parameters are impacted. We then compare the transcriptomic reaction norms of the tropical subtidal P. margaritifera, with those of an intertidal temperate oyster, Crassostrea gigas, reusing data from a previous study. Despite showing similar tipping points with C. gigas, P. margaritifera exhibits strong mortalities and depletion of energy reserves below the tipping points, which is not the case for C. gigas. This divergence relies mainly on the induction of metabolic depression, an adaptation to intertidal habitats in C. gigas, but not in P. margaritifera. Our method makes it possible to detect divergences in phenotypic plasticity, probably linked to the species’ specific life-history strategies related to different habitats, which will determine the survival of species to ongoing global changes. Such an approach is particularly relevant for studying the physiology of species in a world where physiological tipping points will be increasingly exceeded.
Transcriptomic reaction norms highlight metabolic depression as a divergence in phenotypic plasticity between oyster species under ocean acidification
- Award Group:
- Funder(s): Fondation pour la Recherche sur la Biodiversite (FRB)
- Award Id(s): Acidification des oceans
- Funder(s):
- Views Icon Views
-
Article Versions Icon
Versions
- Accepted Manuscript 17 February 2025
- Share Icon Share
-
Tools Icon
Tools
- Search Site
Mathieu Lutier, Fabrice Pernet, Vincent Vanaa, Carole Di Poi, Jérémy Le Luyer; Transcriptomic reaction norms highlight metabolic depression as a divergence in phenotypic plasticity between oyster species under ocean acidification. J Exp Biol 2025; jeb.249458. doi: https://doi.org/10.1242/jeb.249458
Download citation file:
Sign in
Client Account
Sign in via your institution
Sign in via ShibbolethAdvertisement
Cited by
Announcing the 2024 JEB Outstanding Paper Prize shortlist and winner

Every year JEB celebrates early-career researchers through the Outstanding Paper Prize. We recognise the shortlisted ECRS that contributed to 11 remarkable studies published in 2024 and congratulate the winner, Elise Laetz, from University of Groningen. See how else JEB supports and promotes ECRs.
Inside the Intergovernmental Panel on Climate Change with Hans-Otto Pörtner

During the past two decades, Hans-Otto Pörtner has steered climate change policy as a co-Chair of IPCC Working Group II. He tells us about the experience in this Perspective.
Photosynthesis turns symbiotic sea anemone's tentacles toward sun

Snakelocks sea anemones point their tentacles, packed with symbiotic algae, toward the sun so their lodgers can photosynthesize, and now Vengamanaidu Modepalli & colleagues have discovered that photosynthesis by the algae guides their host's tentacles towards the sun.
History of our journals

As our publisher, The Company of Biologists, turns 100 years old, read about JEB’s history and explore the journey of each of our sister journals: Development, Journal of Cell Science, Disease Models & Mechanisms and Biology Open.