Hibernation is characterized by depression of many physiological processes. To determine if this state is reversible in a non-food caching species, we fed hibernating grizzly bears (Ursus arctos horribilis) dextrose for 10 days to replace 53% or 100% of the estimated minimum daily energetic cost of hibernation. Feeding caused serum concentrations of glycerol and ketones (ß-hydroxybutyrate) to return to active season levels irrespective of the amount of glucose fed. By contrast, free-fatty acids and indices of metabolic rate, such as general activity, heart rate, and strength of the daily heart rate rhythm and insulin sensitivity were restored to roughly 50% of active season levels. Body temperature was unaffected by feeding. To determine the contribution of adipose to the metabolic effects observed after glucose feeding, we cultured bear adipocytes collected at the beginning and end of the feeding and performed metabolic flux analysis. We found a roughly 33% increase in energy metabolism after feeding. Moreover, basal metabolism before feeding was 40% lower in hibernation cells compared to fed cells or active cells cultured at 37°C, thereby confirming the temperature independence of metabolic rate. The partial depression of circulating FFA with feeding likely explains the incomplete restoration of insulin sensitivity and other metabolic parameters in hibernating bears. Further depression of metabolic function is likely to be an active process. Together, the results provide a highly controlled model to examine the relationship between nutrient availability and metabolism on the hibernation phenotype in bears.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.