Termites are eusocial insects that host a range of prokaryotic and eukaryotic gut symbionts and can differentiate into a range of caste phenotypes. Soldier caste differentiation from termite workers follows two successive molts (worker-presoldier-soldier) that are driven at the endocrine level by juvenile hormone (JH). While physiological and eusocial mechanisms tied to JH signaling have been studied, the role of gut symbionts in the caste differentiation process is poorly understood. Here, we used the JH analog-methoprene in combination with the antibiotic kanamycin to manipulate caste differentiation and gut bacterial loads in Reticulitermes flavipes termites via four bioassay treatments: kanamycin, methoprene, kanamycin+methoprene, and an untreated (negative) control. Bioassay results demonstrated a significantly higher number of presoldiers in the methoprene, highest mortality in kanamycin+methoprene, and significantly reduced protist numbers in all treatments except the untreated control. Bacterial 16S rRNA gene sequencing provided alpha and beta diversity results that mirrored bioassay findings. From ANCOM analysis, we found that several bacterial genera were differentially abundant among treatments. Finally, follow-up experiments showed that if methoprene and kanamycin or untreated termites are placed together, zero or rescued presoldier initiation (respectively) occurs. These findings reveal that endogenous JH selects for symbiont compositions required to successfully complete presoldier differentiation. However, if the gut is voided before the influx of JH, it cannot select for the necessary symbionts that are crucial for molting. Based on these results we are able to provide a novel example of linkages between gut microbial communities and host phenotypic plasticity.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.