Insect pollinators, such as the tobacco hawkmoth Manduca sexta, are known for locating flowers and learning floral odors by using their antennae. A recent study revealed, however, that the tobacco hawkmoth additionally possesses olfactory sensilla at the tip of its proboscis. Here, we asked whether this second ‘nose’ of the hawkmoth is involved in odor learning, similar to the antennae. We first show that M. sexta foraging efficiency at Nicotiana attenuata flowers increases with experience. This raises the question whether olfactory learning with the proboscis plays a role during flower handling. By rewarding the moths at an artificial flower, we show that, although moths learn an odor easily when they perceive it with their antennae, experiencing the odor just with the proboscis is not sufficient for odor learning. Furthermore, experiencing the odor with the antennae during training does not affect the behavior of the moths when they later detect the learned odor with the proboscis only. Therefore, there seems to be no cross-talk between the antennae and proboscis, and information learnt by the antennae cannot be retrieved by the proboscis.

Morphometries and oxygen consumption were studied in about 35 sphingids, 50 satumiids, and 20 other heterothermic moths belonging to various families. For the pooled data of all species the regression of oxygen consumption on mass in grams is described by the following equations: at rest, cm3/h = 0·402 g0·775 ; during hovering flight, cm3/h = 59·430·818; during warm-up, cm3 = 1·1g0·896. Similar equations are presented for the families Saturniidae and Sphingidae. In sphingids and satuniids thoracic mass, wing length, and wing area increased with body mass, whereas wing loading and aspect ratio were independent of body mass. The sphingids had higher wing loading, aspect ratio, and wing beat frequency during flight than the saturniids. Wing beat frequency was more tightly coupled to morphological parameters in sphingids than in saturniids. The allometry of resting and active aerobic metabolism in heterothermic moths is compared with that of reptiles, mammals and birds. The scaling of oxygen consumption during flight in the moths is almost identical to that of bats and birds.

You do not currently have access to this content.