Despite lacking a brain and having an apparent symmetrically pentaradial nervous system, echinoderms are capable of complex, coordinated directional behavioral responses to different sensory stimuli. However, very little is known about the molecular and cellular mechanisms underlying these behaviors. In many animals, dopaminergic systems play key roles in motivating and coordinating behavior, and although the dopamine receptor antagonist haloperidol has been shown to inhibit the righting response of the sea urchin Strongylocentrotus purpuratus, it is not known whether this is specific to this behavior, in this species, or whether dopaminergic systems are needed in general for echinoderm behaviors. We found that haloperidol inhibited multiple different behavioral responses in three different echinoderm species. Haloperidol inhibited the righting response of the sea urchin Lytechinus variegatus and of the sea star Luidia clathrata. It additionally inhibited the lantern reflex of S. purpuratus, the shell covering response of L. variegatus and the immersion response of L. variegatus, but not S. purpuratus or L. clathrata. Our results suggest that dopamine is needed for the neural processing and coordination of multiple different behavioral responses in a variety of different echinoderm species.

You do not currently have access to this content.