Natural selection has produced many vertebrate ‘solutions’ for the cardiac life-support system, especially among the approximately 30,000 species of fishes. For example, across species, fish have the greatest range for central arterial blood pressure and relative ventricular mass of any vertebrate group. This enormous cardiac diversity is excellent ground material for mechanistic explorations. Added to this species diversity is the emerging field of population-specific diversity, which is revealing that cardiac design and function can be tailored to a fish population's local environmental conditions. Such information is important to conservation biologists and ecologists, as well as physiologists. Furthermore, the cardiac structure and function of an individual adult fish are extremely pliable (through phenotypic plasticity), which is typically beneficial to the heart's function when environmental conditions are variable. Consequently, exploring factors that trigger cardiac remodelling with acclimation to new environments represents a marvellous opportunity for performing mechanistic studies that minimize the genetic differences that accompany cross-species comparisons. What makes the heart an especially good system for the investigation of phenotypic plasticity and species diversity is that its function can be readily evaluated at the organ level using established methodologies, unlike most other organ systems. Although the fish heart has many merits as an organ-level model to provide a mechanistic understanding of phenotypic plasticity and species diversity, bringing this potential to fruition will require productive research collaborations among physiologists, geneticists, developmental biologists and ecologists.

You do not currently have access to this content.