Healthy young adults have a most preferred walking speed, step length and step width that are close to energetically optimal. However, people can choose to walk with a multitude of different step lengths and widths, which can vary in both energy expenditure and preference. Here, we further investigated step length–width preferences and their relationship to energy expenditure. In line with a growing body of research, we hypothesized that people's preferred stepping patterns would not be fully explained by metabolic energy expenditure. To test this hypothesis, we used a two-alternative forced-choice paradigm. Fifteen participants walked on an oversized treadmill. Each trial, participants performed two prescribed stepping patterns and then chose the pattern they preferred. Over time, we adapted the choices such that there was 50% chance of choosing one pattern over another (equally preferred). If people's preferences are based solely on metabolic energy expenditure, then these equally preferred stepping patterns should have equal energy expenditure. In contrast, we found that energy expenditure differed across equally preferred step length–width patterns (P<0.001). On average, longer steps with higher energy expenditure were preferred over shorter and wider steps with lower energy expenditure (P<0.001). We also asked participants to rank a set of shorter, wider and longer steps from most preferred to least preferred, and from most energy expended to least energy expended. Only 7/15 participants had the same rankings for their preferences and perceived energy expenditure. Our results suggest that energy expenditure is not the only factor influencing a person's conscious gait choices.

You do not currently have access to this content.