In birds, like in mammals, the hippocampus critically mediates spatial navigation through the formation of a spatial map. This study investigates the impact of active exploration of an environment on the hippocampus of young domestic chicks. Chicks that were free to actively explore the environment exhibited a significantly higher neural activation (measured by c-Fos expression) compared with those that passively observed the same environment from a restricted area. The difference was limited to the anterior and the dorsolateral parts of the intermediate hippocampus. Furthermore, the nucleus taeniae of the amygdala showed a higher c-Fos expression in the active exploration group than in the passive observation group. In both brain regions, brain activation was correlated with the number of locations that chicks visited during the test. This suggests that the increase of c-Fos expression in the hippocampus is related to increased firing rates of spatially coding neurons. Furthermore, our study indicates a functional linkage of the hippocampus and nucleus taeniae of the amygdala in processing spatial information. Overall, with the present study, we confirm that in birds, like in mammals, hippocampus and amygdala functions are linked and likely related to spatial representations.

You do not currently have access to this content.