ABSTRACT

Star-nosed moles (Condylura cristata) have an impressive diving performance and burrowing lifestyle, yet no ventilatory data are available for this or any other talpid mole species. We predicted that, like many other semi-aquatic and fossorial small mammals, star-nosed moles would exhibit: (i) a blunted (i.e. delayed or reduced) hypoxic ventilatory response, (ii) a reduced metabolic rate and (iii) a lowered body temperature (Tb) in hypoxia. We thus non-invasively measured these variables from wild-caught star-nosed moles exposed to normoxia (21% O2) or acute graded hypoxia (21–6% O2). Surprisingly, star-nosed moles did not exhibit a blunted HVR or decreased Tb in hypoxia, and only manifested a significant, albeit small (<8%), depression of metabolic rate at 6% O2 relative to normoxic controls. Unlike small rodents inhabiting similar niches, star-nosed moles are thus intolerant to hypoxia, which may reflect an evolutionary trade-off favouring the extreme sensory biology of this unusual insectivore.

You do not currently have access to this content.