ABSTRACT
How well an organism completes an ecologically relevant task – its performance – is often considered a key factor in determining individual fitness. Historically, ecomorphological studies have examined how morphological traits determine individual performance in a static manner, assuming that differential fitness in a population is due indirectly to differences in morphological traits that determine a simple measure of performance. This assumption, however, ignores many ecological factors that can constrain performance in nature, such as substrate variation and individual behavior. We examined some of these complexities in the morphology–performance–fitness paradigm, primarily the impact that substrate variation has on performance. We measured maximal sprint speed of green anole lizards on four substrates that varied in size and complexity and are used by or available to individuals in nature. Performance decreased significantly from a broad substrate to a narrow substrate, and lizards were three times slower on a complex substrate than the broadest substrate. We also detected trade-offs in running on substrates with different diameters and in cluttered versus uncluttered environments. Furthermore, morphological predictors of performance varied among substrates. This indicates that natural selection may act on different morphological traits, depending on which substrates are used by individuals, as well as an individual's ability to cope with changes in substrate rather than maximal capacities.
Footnotes
Author contributions
E.A.S. and J.F.H. designed and conducted the research, as well as analyzed the data. E.A.S. wrote the manuscript with input from J.F.H.
Funding
This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.