Determining the information content of vocal signals and understanding morphological modifications of vocal anatomy are key steps towards revealing the selection pressures acting on a given species' vocal communication system. Here, we used a combination of acoustic and anatomical data to investigate whether male koala bellows provide reliable information on the caller's body size, and to confirm whether male koalas have a permanently descended larynx. Our results indicate that the spectral prominences of male koala bellows are formants (vocal tract resonances), and show that larger males have lower formant spacing. In contrast, no relationship between body size and the fundamental frequency was found. Anatomical investigations revealed that male koalas have a permanently descended larynx: the first example of this in a marsupial. Furthermore, we found a deeply anchored sternothyroid muscle that could allow male koalas to retract their larynx into the thorax. While this would explain the low formant spacing of the exhalation and initial inhalation phases of male bellows, further research will be required to reveal the anatomical basis for the formant spacing of the later inhalation phases, which is predictive of vocal tract lengths of around 50 cm (nearly the length of an adult koala's body). Taken together, these findings show that the formant spacing of male koala bellows has the potential to provide receivers with reliable information on the caller's body size, and reveal that vocal adaptations allowing callers to exaggerate (or maximise) the acoustic impression of their size have evolved independently in marsupials and placental mammals.

We wish to thank all the staff at Lone Pine Koala Sanctuary for helping to identify the koalas and two anonymous reviewers for their comments on the manuscript. We also want to thank Martha Tate for her invaluable help recording male bellows and the Queensland Wildlife and Parks Services for access to unpublished data. B.D.C. was partially supported by a European Research Council Advanced Grant SOMACCA (no. 230604) awarded to W. Tecumseh Fitch. This work follows the Association for the study of Animal Behaviour/Animal Behaviour Society guidelines for the use of animals in research, and was approved by the University of Queensland Animal Ethics Committee (approval number SAS/227/10).

You do not currently have access to this content.