In high-altitude vertebrates, adaptive changes in blood–O2 affinity may be mediated by modifications of hemoglobin (Hb) structure that affect intrinsic O2 affinity and/or responsiveness to allosteric effectors that modulate Hb–O2 affinity. This mode of genotypic specialization is considered typical of mammalian species that are high-altitude natives. Here we investigated genetically based differences in Hb–O2 affinity between highland and lowland populations of the deer mouse (Peromyscus maniculatus), a generalist species that has the broadest altitudinal distribution of any North American mammal. The results of a combined genetic and proteomic analysis revealed that deer mice harbor a high level of Hb isoform diversity that is attributable to allelic polymorphism at two tandemly duplicated α-globin genes and two tandemly duplicated β-globin genes. This high level of isoHb diversity translates into a correspondingly high level of interindividual variation in Hb functional properties. O2 equilibrium experiments revealed that the Hbs of highland mice exhibit slightly higher intrinsic O2 affinities and significantly lower Cl sensitivities relative to the Hbs of lowland mice. The experiments also revealed distinct biochemical properties of deer mouse Hb related to the anion-dependent allosteric regulation of O2 affinity. In conjunction with previous findings, our results demonstrate that modifications of Hb structure that alter allosteric anion sensitivity play an important role in the adaptive fine-tuning of blood–O2 affinity.

This work was funded by grants from the National Science Foundation (DEB-0614342) and the National Institutes of Health/NHLBI (R01 HL087216 and HL087216-S1). For valuable laboratory assistance, we thank M.-B. Hemmingsen (Aarhus) and K. Williams (Lincoln). Deposited in PMC for release after 12 months.

You do not currently have access to this content.