The uterine (shell gland) epithelium from the domestic chicken was mounted in Ussing chambers, bathed in symmetric avian saline solution on both apical and basolateral aspects and voltage clamped at 0 mV. The epithelium exhibited a basal short circuit current (Isc) that was partially inhibited by the epithelial Na+ channel (ENaC) blockers, amiloride and benzamil (IC50 values of 0.8 and 0.12 μmol l-1,respectively). Inhibition of basal Na+ absorption by 10 μmol l-1 amiloride was confirmed by measurements of transepithelial Na+ and Cl- fluxes, where inhibition of the apical-to-basolateral and net Na+ flux occurred, but no significant effects on Cl- fluxes were detected. The amiloride-insensitive portion of the basal Isc was both Cl- and HCO3- dependent and was inhibited by the Cl-channel blocker, diphenyl-2-carboxylate (DPC; 100 μmol l-1). Stimulation with 8-(4-chlorophenylthio)-cyclic 3′-5′, adenosine monophosphate (8-cpt cAMP) produced a sustained increase in Isc that was dependent on both Cl- and HCO3-. The magnitude of the amiloride-sensitive Isc was approximately twofold greater in birds where shell formation was complete, but oviposition had not yet occurred. In addition, the amiloride-sensitive Isc was greater in hens over the age of 55 weeks and in molting birds. The anion-dependent component of the basal Isc was reduced in older birds, and electrogenic HCO3- transport was nearly absent in molting birds. These results demonstrated that electrogenic Na+ transport in avian shell gland was similar to the mammalian uterine epithelium and increased with age and during molting. Electrogenic Cl- and HCO3- transport were coupled under basal and cAMP stimulated conditions and basal anion transport decreased with age and during molting.

You do not currently have access to this content.