SUMMARY
Sponges of the species Tethya wilhelma display rhythmic body contractions, which were analyzed by digital timelapse imaging and semi-automated image analysis. For the first time, differential, quantitative data on sponge behaviour could be obtained. The sponges are able to reduce their body volume by up to 73.3% during regular contractions. Each contraction cycle follows a characteristic pattern of four phases, permitting analysis of the kinetics of contraction and expansion. Long-term observations (for >7 days) reveal that the sponge contractions display a day-night periodicity in which contraction cycles are significantly longer during the dark hours. The contractions seem to be mediated by the pinacoderm; they are triggered locally and spread over the sponge surface at 12.5 μm s-1. If two individuals of a clone are fused, the individual contraction rhythm of both sponges persists for several days, until a single new individual sponge is formed with a synchronized rhythm. The reported results and techniques establish T. wilhelma as a model organism for research on the development of aneural signal transduction and integration during early Metazoan evolution.